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Abstract

Recent research indicates that is necessary to provide ways of adapting HRTFs
to individuals since generalized HRTF models result in perceptual problems and
individualized HRTFs are costly to measure. The project investigates in HRTF
individualization using Principal Component Analysis (PCA) and the related liter-
ature on HRTFs is discussed. The process of HRTF individualization using PCA
is formalized and a Least Squares feasibility analysis is presented. To this end,
existing HRTF databases are analyzed, with a focus on the impact of estimation
methodology and database configuration on the coherence of the produced Prin-
cipal Components (PCs) and Principal Component Weights (PCWs). Some initial
throughs on the development of a system for HRTF individualization are presented
together with a user interface that allows the adjustment of the PCWs using the
different methods discussed for a number of existing HRTF databases.
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1 Introduction

Head-related transfer functions (HRTFs) describe the acoustic transmission path from
a sound source to the left and right ear. The HRTF is defined as the ratio of sound
pressure in the ear of a subject in relation to the sound pressure level if the subject is
not there [RD05]. They are useful both for understanding the perceptual mechanisms of
hearing and reproduction of virtual spatial sound scenes. These functions are different
for each person. Individualized HRTFs provide an accurate representation of the sound
pressure due to a three-dimensional sound field at the eardrum using headphones.

One way to obtain individual HRTFs is to measure it. However, this conventional method
is cost-intensive and time consuming, because expensive equipment and expert knowl-
edge in acoustical measurement is necessary. Typically, a measured HRTF set includes
a large number of impulse responses, measured for each specific direction of interest.
Due to the high spatial resolution that is necessary for good localization accuracy, this
process is normally time-consuming.

Because of this reason, there has been an effort to develop generalized HRTFs. This how-
ever did not yield the expected results. Although in several experiments ([Shi08],[HPP10])
it was confirmed that individualized HRTFs result in localization performance compa-
rable to free-field localization, when generalized HRTFs were used, poor performance
emerged, expressed primarily by poor localization and a large number of front-back and
up-down confusions [KW92].

Recently, therefore there is a strong research trend for a convenient customization tech-
nique based on existing HRTF databases. Nowadays, a common method to improve
localization with non-individual HRTFs is to individualize them by subjective selection,
scaling or grouping. Many studies investigated in the approach of spectral manipulation,
first of all Middlebrooks [Mid99b] [Mid99a], Wightman and Kistler [KW92] [SL11] and
Hwang and Park [HPP10] [HPP08]. An alternative research direction sought to individ-
ualize HRTFs by modelling their behavior in relation to anthropometric parameters, such
as head width, shoulder width, pinna offset and so on. Some studies ([XLS09], [Rod05])
have found linear relationships of anthropometric dimensions with spectral cues, such as
pinna spectral peaks or notches that influence spatial hearing.

In this spirit, this project intends the research and develop a manageable HRTF cus-
tomization method based on subjective tuning of PCA basis functions. To this end,
related HRTF literature is reviewed and the particular method is investigated in order to
understand its capabilities and limitations. The results of this project could be applied
to the processing of tunable non-individual HRTFs for 3D audio rendering.

1.1 Psychoacoustic Importance of HRTFs

HRTFs provide localization cues for spatial hearing in virtual auditory display. While
localization in azimuth plane can be simply modeled by ILD and ITD, localization in ele-
vation plane and discriminating between front-back sounds is more complex and subject-
dependent. Obviously, ITD and ILD are also subject-dependent, but these cues can be
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modelled easily using physical dimensions, such as head size or radius.

The perception of the location of sound source can be evaluated in terms of the accu-
racy of the perception of its direction, the degree of its externalization and the focus.
Externalization means that a sound event is localized outside the head, like in real world
situations. The term focus is associated with the correct reproduction of the spatial
extent of a sound stimuli.

Different times of arrival on both ears occur when a sound source is not located in
the median plane. Low frequencies bend around the head, a phenomenon that is called
diffraction, whereas high frequencies are reflected. According to Rayleigh’s duplex theory
of localization [Che99], this results in interaural time difference (ITD) and interaural
level difference (ILD) between the two ears, which are used by the brain to estimate
the azimuth of a sound source. ILD is defined as the difference in the energy between
each ear, and is dominating at frequencies higher than 1.5 kHz (Figure 1a) because
in this frequency range, the contralateral ear is shadowed by the head and less sound
energy reaches this ear. According to Blauert [Bla83], the smallest perceptible threshold
(just-noticeable difference, JND) is about 1 dB. Thus, the ILD is a key parameter for
horizontal localization above 1.5 kHz. Similarly, interaural time difference describes
the time difference between the incoming sound wave on the right and left ear (Figure
1b). In addition, important is the time difference between the signal envelopes in high
frequencies. The ITD can be modelled as

4(T ) =
r

c0
(θ + sin θ) , (1)

with head radius r, angle of incidence θ of the sound and c0 as the speed of sound
[Kuh77]. This approximation holds for low frequencies only. If the ITD is longer than a
wavelength, it can not be assigned to a unique angle. Based on the absolute refractory
period of neurons, this mechanism is limited to 1.5 kHz. According to Kyriakakis [Kyr98],
human can discriminate time differences in the order of 7µs.

The duplex theory fails to explain localization in an open field where sound sources can be
emitted from every imaginable source position (azimuth and elevation). These positions
form the cone of confusion (same ITD) or torus of confusion (same ILD) [Mid99b].
Based on the duplex theory, elevation perception and front-back discrimination cannot
be achieved. However, incoming sound is spectrally colored by the physical structure
of a listener, such as head, pinna, shoulder and torso [Che99]. Thus, localization in
elevation strongly depends on pinna (above 3 kHz) and head/torso response (below 3
kHz). Unlike the ITD and ILD, these spectral cues are effective for monaural as well as
binaural directional sounds [SNH+10].

In real environments, subjects normally resolve front-back and up-down ambiguities by
changing the head position [Bla83]. New localization cues about the sound stimuli is
obtained and the spectral details, such as peaks or notches give information about the
source position.
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(a) Level difference between left and right HRTF
when sound stimulus is located on the right side
of the head (0◦ elevation, 90◦ azimuth).
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(b) ITD of 10◦ elevation across all azimuth po-
sitions.

Figure 1: Level difference and interaural time difference (ITD) between left and right
ear of subject ID 103 in ARI database.

1.2 HRTF Properties

The impact of the presence of the body, head and outer ear is to cause peaks and notches
in the HRTF frequency response. These spectral cues are mostly contained in the first
0.7ms of the HRIR [BD98]. The impact of the different components can be extracted
from the HRIR, if the reflections caused by shoulders, torso and pinna are separated.
Spectral cues occurring at middle and low frequency bands (< 3kHz) are mostly due to
head diffraction and torso reflections [Shi08]. Pinna generally influences frequencies in
the range of 2-14 kHz [Gie92] and becomes dominant above 5 kHz [RD05].

In addition, interference of direct and reflected sound waves in rooms result in sharp
notches in the spectrum (pinna spectral notches) with a periodicity that is inversely
proportional to the time delay [SGA10].

Psychoacoustic experiments have proved that the location of the spectral peaks and
notches in frequency are closely associated with vertical localization and front-back dis-
crimination. Blauert [Bla70] found out, that energy in specific frequency bands (280-560
Hz, 2.9-5.8 kHz) result in frontal perception whereas others (720-1800 Hz, 10.3-14.9
kHz) tend to be perceived as coming more from the back. These are called directional
bands. Myers [Mye89] focused on amplifying and attenuating energy in four frequency
bands within a range between 6 and 12 kHz (boosting bands with center frequencies 392
Hz and 3605 Hz, attenuating bands with center frequencies 1188 Hz and 10938 Hz) and
filed a US patent. Tan and Gan [Tan98] continued Myers work and implemented a set
of parallel filters based on five frequency regions (f1: 225-680 Hz, f2: 680-2000 Hz, f3:
2-6.3 kHz, f4: 6.3-10.9 kHz, f5: 10.9-22 kHz). For frontal localization f1, f3 and f5
were amplified whereas f2 and f4 were attenuated for backward perception. However,
they did not describe the full experiment and statistical analysis.

On the contrary, Hebrank and Wright [Heb74] reported that removing frequencies below
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3.8 kHz did not affect forward nor backward perception. Musicant and Butler [Mus84]
confirmed this thesis. Bronkhorst [Bro95] reported that localization is not affected by
sound energy at frequencies above 9 kHz. Unlike to Blauert and Hebrank, he used
headphone instead of loudspeakers for his experiment.

The exact determination of the frequency bands that determine elevation perception
and front-back discrimination has not been established. This might also be due to the
observation by Langendijk and Bronkorst [LB02], that cues from different bands interact
with each other. Through systematic manipulation of the spectrum, Langendijk and
Bronkhorst investigated the contribution of spectral cues to human sound localization.
They found out that the up-down cues are essentially in 1-octave band from 6 to 12
kHz and the front-back cues are coded mainly in the high 1-octave band from 8 to 16
kHz [QE98]. However, studies are still in disagreement which exact frequencies have an
effect on the localization and it is not yet explored, which peaks are really important
[Bla83].

Kulkarni and Colburn mentioned that a smoothing of the HRTFs by reducing the Fourier
coefficients in the reconstruction of the magnitude spectrum did not significantly affect
localization performance, even when the coefficients were reduced from 256 to 16 [KC98].
Furthermore, in a test focusing on azimuth location, all subjects reported complete
externalization of the sound stimuli.

Middlebrooks [MMO00] introduced a new domain called Spectral modulation frequency
domain (SMF) with units of cycles per octave. It describes the Fourier transform of
the frequency spectrum. Thus, smoothing of the HRTF in frequency domain is similar
to a low-pass filtering in modulation frequency domain. It was shown that low-pass
filtering at 2 cycles/octave did not significantly influence localization accuracy. From
this, Middlebrooks concluded that the major cues for sound localization are in the SMF
region below 2 cycles/octave.

1.2.1 Sensitivity to Phase

In order to study HRTF phase it is usually decomposed into three components: a
minimum-phase and an excess-phase component represented by a constant time delay:

H(ejw) = Hmin(ejw) ·Hep(e
jw), (2)

with the excess-phase function modeled as a linear phase term and an all-pass:

Hep(e
jw) = Hlp(e

jw) ·Hap(e
jw). (3)

Commonly, the excess-phase function is modelled as a linear phase term only:

H(ejw) = Hmin(ejw) ·He−jwτap . (4)

The minimum-phase assumption allows to specify the phase of a HRTF by its magnitude
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response only. Through Hilbert transform, the logarithmic magnitude frequency response
and phase response of a minimum-phase causal system are connected. In general, a
minimum-phase system can be constructed by finding the roots of a polynomial that are
outside the unit circle in the z-plane and mirroring them on their reciprocal positions.
Basically, the all-pass term with the same order as the original function is obtained
by dividing the original function by its minimum-phase version in frequency domain.
However, the aim is to get an all-pass term that contains only low-order filters, therefore
each complex conjugate pair of poles and zeros correspond to a second order section
and each real pair correspond to a first order section [POM00].

Several researchers investigated the minimum-phase nature of HRTFs. Mehrgardt and
Mellert [MM77] claimed that HRTFs are nearly minimum-phase up to 10 kHz whereas
Nam et al. [NKA08] pointed out that HRTFs are essentially minimum-phase. The
maximum of cross-coherence between HRIRs and minimum-phase versions was used to
evaluate the similarity between the signals. They found out that the values for coherence
are above 0.9, which means that the biggest part of HRTF energy is minimum-phase.
HRTFs in fontal and ipsilateral directions tend to have coherences below 0.9, so in
these directions the HRTFs had non-minimum-phase zeros in high frequency regions but
almost none of them below 8 kHz. Nam suggested to model HRTFs by pure delays
followed by minimum-phase filters.

Kulkarni and Colburn [KC98] examined whether HRTF decomposition into a minimum
phase and an all phase component results in HRTFs that can not be distinguished from
measured ones. The remaining all-pass term is ignored because the auditory sensitivity
to the absolute phase spectrum is low. Therefore the ITD can be assumed as frequency
independent time delay and is calculated as the difference of the group delays of left and
right ear and rounded to integer samples. The validity of the model was confirmed by
subjective testing.

Kistler and Wightman [KW92] compared real HRIRs with ones that were synthesized
using the assumption of minimum-phase. Results from the two conditions were almost
similar. This means that the phase of synthesized HRTFs can be calculated by a combi-
nation of minimum-phase functions and a pure time delay without loss of spatial hearing.

Also Plogsties et al. [POM00] found out that the all-pass component of HRTFs can be
removed without audible consequences. In an three-alternative forced choice (3-AFC)
experiment the audibility of the all-pass component was tested. For some HRTFs, the
absence of the all-pass term was detected. In this case, he suggested to replace the
all-pass components by pure delays that are calculated as the group delays of the all-
pass terms at 0 Hz. The interaural time difference was modelled as the interaural group
difference evaluated at 0 Hz calculated from the excess phase.

Lindeau [LEW10] realized that using Hilbert transform for calculating the phase term
could alter the impression of sound source distance. Another common ITD extraction
method is onset or leading edge detection by finding the sample where the impulse
response exceeds 5% of the maximum value. However, it must be ensured that cutting
into the rising edge of impulse responses including a larger SNR, such as the ipsilateral
impulse response, is avoided.
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Typically HRTFs are implemented as a cascade of a pure delay term and a minimum-
phase filter. This model has some advantages. Firstly, the length of the FIR filter can
be shortened, because the main energy occurs at the beginning of the impulse response.
Secondly, smooth interpolation of HRIRs when simulating moving sounds can be better
implemented with minimum-phase filters. Several subjective hearing tests confirmed that
the all-pass term can be neglected in almost all cases, thus minimum-phase HRTFs with
a pure delay as ITD are now widely applied.

2 HRTF Estimation and Modelling

HRTFs are usually decomposed into a directional and a non-directional part, which
are called Directional transfer function (DTF) and Common transfer function (CTF) or
Average transfer function (ATF) [LB02], respectively. The latter is mainly influenced by
the resonance of the ear canal and includes only the diffuse part. It can be calculated
by averaging the relevant (logarithmic or linear depending on the representation used)
spectrum of the HRTF H1...N(f) across all source positions:

C(f) =
20

N

N∑
i=1

log|H i(f)| . (5)

Hence, the DTF can be obtained by subtracting the CTF from the HRTF. In literature,
the calculation of the DTF is slightly different, for example Middlebrooks [Mid99b] took
the root mean square of the HRTF to calculate the CTF. Nevertheless, the resulting
directional function primarily consists of the direction-dependent spectral parameters of
the HRTFs.

2.1 Why is Individualization necessary

When using generalized HRTFs, occurring ambiguities may not always be solved properly.
Compared to binaural simulation, head movements can not affect directional sounds due
the fact that the listener is wearing a headphone. This results in localization error,
especially in elevation plane.

As shown in Figure 2, HRTFs are unique for each individual. Several parameters de-
termine this difference: the location of the ears, the differences between the two ears,
the size and shape of the head and the size and shape of the torso. Each ear has its
own transfer function, thus it is not symmetric even in the median plane (asymmetric,
especially from 5 kHz) and unique for each source position. In the course of life, HRTFs
change because of body changes. Nevertheless, there is a certain plasticity in the au-
ditory system, that helps it to tune to these changes. This also explains the finding
that we can be gradually accustomed over time to HRTFs others than our ones [Bla83].
Mendonca [CM10] dealt with the issue of learning and found out that there is a learning
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effect after a period of time, although this a slow and sometimes inconvenient process
that has not been thoroughly studied.
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Figure 2: Left ear HRTFs of one source position (0◦ elevation, 25◦ azimuth) of three
different subjects (ID19, ID40 and ID45) in CIPIC database.

Because the spectral cues contained in HRTFs are significant for localization, localization
errors occur if a non-individual HRTF does not match because of the existing diversities.
Several studies investigated in this issue ([LB02], [SL11], [SF03]).

Since the effort required for the measurement of individual HRTFs is significant, there
has been an effort to use generalized HRTFs for reproduction in binaural setups (e.g.
headphones). This is usually an averaged HRTF, that is calculated from an HRTF
database. The perceptual consequences are lack of presence, that sounds appear "in
head" instead of being externalized, poor localization and a large number of front-back
and up-down confusions. Wenzel examined how the perception of synthesized HRTFs
changed over time [Wen88]. However, is is important to mention, that even in real
environment some confusions (up-down or front-back) can occur. In an experiment
([WAK93]), the accuracy of localization in free-field was compared to the virtual stimuli
(over headphone) using a generic HRTF set from a study by Wightman and Kistler
[WK89]. 16 subjects evaluated 24 source positions. Even in the free-field condition, the
mean error rate for front-back and up-down confusions was 19% and 6% respectively.
When using synthesized HRTFs, the mean error rate significantly increased to 31% and
18%.

One of the main causes of degradation in localization in virtual sound reproduction is
an unmatched head size [Xie02]. Confusions and degradation in elevation perception
occur in the process of averaging. The spectrum is smeared, because the location of the
peaks and notches of subjects occur at different magnitude and at different frequencies.
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Hence, the spectral variance of human HRTFs is too large to enable a simple averaging
model to work.

2.2 Measurement

In order to obtain HRTFs of a listener, HRIRs are measure and stored as a pair of head-
related impulse responses. Typically HRIRs are measured at a certain fixed radius in
relation to the head. To achieve high spatial resolution and high fidelity reproduction, a
large number of impulse responses has to be measured. In existing databases, the number
of measured source positions varies from 24 to more than 1500 for each subject. The
measurement of HRIRs is very time consuming and costly, as each acoustic transmission
path must be measured individually. An anechoic room and high quality equipment is
required. In addition, specialized knowledge in the preparation of the microphones and
speakers is needed. It is recommended to use a software tool that operates and controls
the whole measurement process in order to minimize errors and speed up predefined
tasks.

For the sake of completeness, it should be mentioned that a method for reciprocal mea-
surement already exists ([ZDG06]). The sound coming from a small loudspeaker in the
ear canal is measured by a surrounding microphone array. In [Zaa10], the measurement
time of 64 source positions could be reduced to only one minute.

When measured, it is easy to play a sound event at a desired source position through
headphones, by convolving the sound with the measured HRIRs of the left and right ear
at the desired location:

sleft(t, θ, φ) = sstimuli(t) ∗ hrirleft(t, θ, φ) ,

sright(t, θ, φ) = sstimuli(t) ∗ hrirright(t, θ, φ) ,
(6)

with hrirleft/right(t, θ, φ) as the left and right ear HRIR of a source position (azimuth θ
and elevation φ), sstimuli(t) as the monaural stimuli and sleft/right(t, θ, φ) as the resulting
signal at the source position.

As part of the process and in order to analyze and validate the tuning process that
is described in Section 5, my own head-related transfer functions were measured at
Acoustic Research Institute (ARI) in Vienna (Figure 3).

3 Modelling

A large number of methods to model HRTFs have been proposed. These can be catego-
rized in signal models, anthropometric models and orthogonal basis function expansions.
Signal models attempt to provide a simplified transfer function (plus time delay), charac-
terized by complex poles and zeros. Most frequently, these model the diffraction effects
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(a) Anechoic chamber (b) Microphone in ear canal

Figure 3: Measurement setup at Acoustic Research Institute (ARI) in an anechoic cham-
ber. The chair rotates automatically during the measurement.

of the head (e.g. head-shadow filter). Thus, only azimuth effects can be modelled con-
vincingly. To ensure localization in the elevation plane as well, a changing time delay in a
monaural model can be added. This could produce a spectrum with a moving notch and
consequently the effect of a vertical motion [BD98]. A low-order IIR representation has
been proposed by Kulkarni and Colburn [KC04]. Asano et al. [AS90] introduced a model
with 40 poles and zeros. Quite commonly, linear prediction theory (LPC) or weighted-
least-squares (WLS) is applied to eliminate artifacts from windowing and extracting the
poles respectively. The reduced representations ease the physical interpretation. The
peaks and notches in the DTF of an external ear could be characterized by using a
pole-zero model. Kulkarni used an all-pole model (position-dependent) and the coeffi-
cients were estimated using the autocorrelation method for linear prediction, where the
magnitude in the shadowed ear (more than 60◦ from the midline) was smoothed.

The phase is usually not considered in detail and instead a minimum phase, plus time-
delay plus all-pass time delay is used. The minimum-phase can be obtained by the
Hilbert transform of the logarithmic magnitude spectrum. Secondly, the all-pass filter of
HRTFs can be modelled as a simple time delay (at least up to 10 kHz) [HF98].

Anthropometric HRTF models try to identify and explore the relationship between the
HRTF spectral properties and the shape of the ear. Several models deal with the problem
of individualization by using anthropometric data ([Rod05], [Mar10]). Although there
is evidence that anthropometric data can explain certain properties of the HRTF, a
direct relationship has not been established yet. In order to model HRTFs based on
anthropometric data, accurate measurements of the pinna, external ear, torso and head
are necessary. Table 2 provides an overview of the physical dimensions used in the CIPIC
database. The ARI (Acoustic Research Institute) database includes the same parameters
and few more that have been considered to be important.
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In anthropometric models, the pinna-related transfer function (PRTF) is of interest.
PRTFs isolate the influence of the pinna ear and can be obtained by extracting the rel-
evant part of the HRIR. This is not always easy. Raykar et al. [RDD03,RD05] proposed
that reflections of shoulder and torso, can be eliminated by using a right half-sized Han-
ning window with a length of about 1 ms. Geronazzo and Spagnol [GS10] described an
algorithm to separate reflections and direct sound from the PRTF. Thus for reconstruc-
tion, the influence of each physical phenomenon can be modeled separately. The original
PRTF could be re-synthesized though a low-order filter model. Upon isolating the PRTF,
the resonant and reflective influence of the pinna are identified by using residue com-
putation and multi-notch filter parameter search. The PRTF magnitude spectrum is
compensated iteratively until no significant notches are left. Then a low-order filter esti-
mates and synthesizes the PRTF. In [SGA10], the authors continued the investigation in
the extraction of the most important notches and their relation to anthropometry. Using
the CIPIC database, three major resonances at 4, 7 and 12 kHz could be identified. A
notch tracking algorithm was used to exploit the most distinct spectral notches. Then
a structural model was formed with two resonances and three notches (resulting in an
eight-order global filter) by two filter blocks respectively. Finally a bandpass suppressed
undesired frequencies.

Wenzel et al. [Wen88] found a relationship between a listeners accuracy in vertical
localization and the characteristics of a listeners external ears. Begault et al. [Beg94]
pointed out that concha and fossa of the helix are major parameters for localization at
high frequencies. According to Satarzadeh et al. [DS07], only depth and effective width
of the ear are crucial for modelling the PRTF. On the contrary, Rodriguez et al. [Rod05]
identified even more dimensions (cavum concha height, fossa height, pinna height, and
pinna rotation angle) that are closely related to the PRTF. Whereas spectral features of
the pinna are dominant above 5 kHz, head diffraction and torso reflections are providing
additional cues in lower frequency regions. Some studies ([BD98], [XLZ07]) investigated
the importance of various anatomical structures in relation to sound localization.

Based on the shape of the pinna, numerical methods have been used to model HRTFs
[XLS07]. In such methods, the physics of wave propagation and diffraction are mod-
elled [BD98]. Quite often the models do not include the influence of HRTFs and are
rather simplified. Spherical head model, snowman model and ellipsoidal head model
have been developed in this direction. The models are often accompanied by a simpli-
fied filter representation, where the filter parameters of the model could be related to
certain anthropometric dimensions. Currently, there are still issues to measure the pinna
accurately. Even small deviations in measurement can cause large errors in modelling.
However, if there is a precise measurement, this approach can have good results [Sot99].
Despite high performance computing, there is still a gap between measured and synthe-
sized HRTFs, so these methods need to be improved and compared with existing HRTF
databases. The accuracy of the model always strongly depends on the measured data
used by the model. In general, a large amount of samples for a specified position in a
three-dimensional space is essential in order to synthesize this source position. This goes
with large memory size and high-performance equipment. In order to save memory, it is
a common way to model the HRTFs using only few distinct parameters that are relevant
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for spatial hearing.

Raykar et al. [RDD03] decomposed the HRTF into different components and extracted
features that could be perceptually relevant for sound source localization. By relating
these features to the anthropometry, it could be possible to model HRTFs for any subject
and source position. Linear prediction (LP) analysis was applied to extract the poles of
the HRIR. For any given azimuth, a 2D image (HRIR or HRTF) of all elevations was
calculated from the CIPIC database. Three distinct features could be marked by visual
inspection: ITD with head diffraction with pinna effects, torso reflections and knee
reflections since the subject were measured seated. In order to isolate various spectral
peaks and notches, poles were extracted by Linear Prediction Analysis (LP). These poles
correspond to the resonances of the pinna. The results were in agreement of the thesis
by Shaw [Sha97] describing six modes of resonance.

3.1 Orthogonal Basis Functions Models

Orthogonal basis modelling model HRTFs on a set of orthogonal basis functions. Prin-
cipal component analysis (PCA), Spherical Basis Functions and the Karhunen-Lòeve
expansion has been used for this purpose. Because a PCA model is used in this work, it
is explained further below.

Models using spherical harmonics try to express each bin of the HRTF magnitude spectra
in the form of a weighted sum of surface spherical harmonics (SSHs). The HRTF set
is decomposed into spherical basis functions in spatial domain. These are functions
that are orthogonal upon a surface of a sphere. Since the resulting spherical harmonics
representation is continuous, any location in space, not just the source positions where
measurements were obtained, can be estimated. Consequently, this model is well suited
for synthesizing smooth auditory motion. Evans et al [EAT98] proposed a model that
allows a direct, continuous, and accurate synthesis of a pair of HRTFs for any arbitrary
direction. Similary, Zotkin [ZDG09] presented a method that works well for an arbitrary
grid.

Principal component analysis is a powerful statistical technique that is used reduce the
dimensionality in a correlated dataset and simplifying it while keeping the important
information. In this section, several studies based on PCA compression are discussed as
these are extensively used to form the model we will work on.

Generally, PCA is an analysis of variance. Directional information is highlighted whereas
redundant information is neglected. The resulting data is a set of orthogonal princi-
pal components that are sorted according to their variance in the original data. The
mathematical approach can be found in the Appendix A.

When arbitrary HRIRs and HRTFs are modelled, PCA is used to estimate the principal
components that are later used as a set of general basis functions. Synthesized HRTFs
can be generated from individual components through a linear combination of basis
functions and they can reconstruct any HRTF in the dataset. PCA has been done
both on plain HRIRs and HRTFs. When applied to HRTFs, a minimum phase model is
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required for reconstruction. Across all subjects, a tendency for variation of weights as a
function of azimuth and elevation was found and most studies claimed that the first 3-5
basis functions provide information about front-back discrimination of a source position.

3.1.1 Principal Component Modelling of HRTFs

Martens [Mar87] presented a model that is based on PCA and minimum-phase recon-
struction. The data set included critical-band-filtered HRTFs of 36 source positions in
the horizontal plane of two subjects. He used only 4 of 24 components for reconstruction
to explain 90% of the data set. Unfortunately no experiment for perceptual evaluation
was carried out.

Kistler and Wightman [KW92] analyzed HRTFs of 10 subjects using PCA and showed
that more than 90% of HRTF variance can be approximated with only 5 of 150 basis
spectral functions. For PCA, a matrix Xinput (5300× 150) was composed by including
10 subjects, 265 source positions and corresponding DTFs of both ears. Only the 150
log magnitude points in a specific frequency region (0.2 - 15 kHz) were used for analysis.
It is worth mentioning that the resulting basis function are almost close to zero below
2-3 kHz. This points out that the DTFs have almost no direction-dependent variation
in this frequency range. For reconstruction, HRIR were assumed to be minimum-phase
functions and ITD was approximated by a constant time delay. This interaural delay
was estimated by calculating the maximum of the cross-correlation function of measured
left and right HRIRs. The model was validated, in an experiment with 5 listeners. Five
different conditions were compared. In the first, "baseline" condition, the measured
HRTFs were used. In the control condition, the original HRTF magnitude spectrum
reconstructed using minimum-phase was used. In the other conditions the HRTF were
reconstructed using one, three or five PCs, respectively. There were 10 runs, including
36 pseudorandomly selected positions, for each condition. In one run, each stimulus was
repeated 8 times with 300ms pause between. After listening to a stimulus, the subject
reported verbally the perceived azimuth and elevation and the experimenter recorded
the values on keyboard. Before testing, the headphone transfer function was compen-
sated. In contrast to other studies in which confusions were "resolved" or inspected
separately ([WK89]), the raw data including confusions was analyzed. Results from con-
trol condition were almost similar to the baseline condition. This means that the phase of
synthesized HRTFs can be calculated by a combination of minimum-phase functions and
a pure time delay. Moreover judgments on the horizontal plane were accurate even when
only the first PC was used for reconstruction. The first principal component therefore
contains most of the interaural intensity information necessary for lateral discrimination.
Front-back and up-down performance dramatically decreased when using less than five
PCs. Basis functions 2-5 turned out to be crucial parameters for front-back and up-down
discrimination. So when using less than five components, the fine spectral details are
not accurately represented by the model, therefore subjects are not able to distinguish
properly between front-back and up-down.

Middlebrooks et al. [MG92] also examined HRTF reconstruction using PCA with a
minimum-phase plus time-delay model. First, he verified if PCA of different data sets
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give almost the same results. Because in theory, differences in measurement setup and
subjects should have only little effect on the resulting components, he compared own
measured HRTFs (8 subjects, 360 source positions) with the database by Kistler and
Wightman (10 subjects, 265 source positions) [KW92]. A high correlation between the
two different sets of basis vectors was found (PC1: 96%, PC2: 88%, PC3: 70%). This
reveals that PCA is relatively robust to different measurement techniques. In addition,
Middlebrooks divided the data into two groups according to their physical size. He
found out, that basis vectors of smaller subjects were shifted systematically to higher
frequencies. However, no evaluation was carried out.

Qian and Eddins [QE98] investigated in the importance of the spectral modulation fre-
quency (SMF), that is the Fourier transform of the frequency spectrum and can be
considered as the rate of change in HRTFs. They were able to find SMFs that are criti-
cal to sound localization. First, PCs in SMF domain were analyzed, then a localization
experiment by comparing original and manipulated HRTFs was conducted. PCs for each
ear of each HRTF set (including 360 source positions) were derived. To obtain the spec-
tral modulation characteristics, Fourier transform of all PCs was calculated. This results
in FTPCs (FT of the PCs), presented in spectral modulation frequency domain. It was
shown, that only seven FTPCs can present 99% of the total variance in the data set.
The main energy of these components is located in the lower regions, below 2 cyc/oct.
Moreover, the first FTPC contains a prominent peak at the first SMF across all HRTF
sets. Prior to experiment, an HRTF customization procedure has been applied, because
non-individualized HRTF sets were used. After preselecting 6 best matching HRTFs from
26, a single best matching HRTF and a proper scale factor was found. Both subjective
and objective criteria were used. In the experiment, specific regions in the SMF domain
were filtered (by applying notch and low pass filters) or enhanced. For reconstruction,
the original phases of the database were used because the modifications were limited
to the spectral cues. 10 normal hearing subjects passed seven different conditions (one
baseline and six HRTF-modified conditions). In the test session, 10 judgments were
made for each of the 72 directions. The subjects identified the direction of the stimuli
by using a mouse in a graphical interface. Azimuth localization was quite accurate across
all conditions when front-back confusions were resolved (average front-back confusion
rate was 31%, standard deviation 7.9%). Up-down confusion rates were relatively low
(10.8%, s.d. 4%), therefore these errors were not resolved. Localization performance
in elevation was mainly effected by notch filters in the SMF domain between 0.1 and
0.4 cyc/oct and 0.35 and 0.65 cyc/oct. However, low pass filtering had little effect on
elevation localization. In summary, low regions in spectral modulation frequency domain
can be associated with sound localization at low elevations.

Instead of using HRTFs for PCA processing, Hwang and Park used HRIRs to model
arbitrary impulse responses. In [HPP10], they performed PCA on median-plane HRIRs
in CIPIC database. Prior to that, HRIRs were time-aligned by removing the interaural
time delay (ITD) between two related impulse responses. The maximum of the cross-
correlation function between two HRIRs indicates the time delay. Ear-symmetry was
assumed, so only the left-ear HRTF was modelled and the right-ear channel was driven
by the same signal. Due the fact that they focused in the inter-subject variations in
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PCWs, the PCW can be modelled as a simple function of elevation, because a common
elevation dependency of PCW across all subject exists. Static source positions as well as
spatially continuous HRIRs in the median plane were used for customization. Subjective
listening tests were carried out to evaluate the model. Nine subjects customized both
stationary and moving sounds. For seven of nine subjects there was no statistically sig-
nificant difference between using measured or customized HRIRs. Contrary, localization
performance for all probands increased when using individual instead of KEMAR HRIRs.
The results when presenting moving sounds were about the same.

In [HPP08], they took the approach from above to model HRIRs with 12 PCs resulting
in modelling error bound of 5%. Again, only the median plane HRIRs in CIPIC database
were involved. In addition, the individual HRIRs of six male subjects were measured using
different measurement conditions and source positions. A short localization test at 9
positions in elevation plane was conducted to evaluate the performance of the model.
Headphone transfer function was equalized and each source position was presented 10
times, including 4 different conditions (measured, 12, 8, 4 PCs). The subject located
the position in a graphical interface by changing a slider bar with a resolution of 1
degree. There was no statistically difference in localization performance of the first and
second condition (measured vs. reconstruction with 12 PCs). When using 12 PCs,
the average error was about 15% but the spectral features in the measured set were
substantially reproduced. This was concluded by visual inspection of 2D diagrams of all
log-magnitude HRTFs. Again, the error increased dramatically as the number of PCs
was reduced. Although using two different datasets for modelling and measurement, the
empirical mean does not contribute to the localization performance, but it has an effect
on the modelling error.

Chen et al. [CvVH93] proposed a model that consist of a set of eigenfunctions which are
formed by using the Karhunen-Lòeve expansion (KLE) or HRTFs. This expansion is used
to present data in a low-dimensional space. The model consists of weighted combinations
of the basis vectors, but in contrast to PCA, the complex valued eigentransfer functions
of KLE generate HRTF magnitude and phase. Focusing on the time domain, Wu et
al. [Wu97] calculated the KLE of HRIRs and proposed a low-computational model.
However, these two models have been tested only on an anesthetized live cat.

3.1.2 Principal Component Modelling for Anthropometry

The general methodology in these models is the connection of anthropometric parameters
with principal component weights. The calculation of the correlations is performed either
for each individual target position or for the entire database. Since some individual
dimensions do not reveal any strong correlation, the result can be improved by using
linear regression. The final goal of all these studies is the estimation of HRTFs using
only physical parameters.

Rodriguez and Ramirez [Rod05] [Ram05] showed that the first five principal component
weights (PCWs) of each source position were correlated with the anthropometric data
in a way, but the resulting correlation coefficients were low, consequently they were not
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Variable Calculation
d11 d1 + d2
d12 d1 + d2 + d4
d13 (d1 + d2) ∗ d3
d14 (d1 + d2) ∗ d3 ∗ d4
d15 (d1 + d2) ∗ d3 ∗ θ2
d16 (d1 + d2) ∗ d7 ∗ d8
d17 (d1 + d2) ∗ d7 ∗ θ2
d18 d1 ∗ d3
d19 d5 ∗ d6
d20 d5 ∗ d6 ∗ d8
d21 d5 ∗ d6 ∗ θ2
d22 d4 ∗ d6

Table 1: Multidimensional linear regression with existing anthropometric data [Rod05].

well correlated. Because pinna relevant dimensions are better related to the transfer
function of the pinna, PCA was performed on 64 PRTF sets and the resulting weights
were correlated with existing physical dimensions. The best predictors turned to be out
fossa height, pinna flare angle and pinna width. Rodriguez suggested that combinations
of anatomical features could provide a better match to HRTFs. Twelve extra parameters
were derived from existing dimensions, listed in Table 1. Some of them have physical
meaning while others are bidimensional or tridimensional. It turned out that the correla-
tion between the new parameters and PCWs increased, thus they were better related with
the concha, especially d13. In addition correlation coefficients between pinna parame-
ters and central frequencies of spectral notches (NCF) were calculated. The correlation
between pinna parameters and NCFs were stronger than the correlation between pinna
parameters and PCWs, but still poor for a linear regression. Finally, 20 PCWs and 2
NCFs could be estimated based on their anthropometric parameters by solving the least
square problem. Notch positions were adjusted from the estimated NCFs by using an
moving notch algorithm. A useful application of this method could be the extraction of
parameters from a pinna photography. Image processing and automatic segmentation
could lead to a good result.

Xu et al. [XLS09] proposed a weighted correlation method (WCM) to correlate PC
weights with local and global key anthropometric measurements (KAMs). Local KAMs
are dependent on the source position, whereas global KAMs are independent of posi-
tions and represent general dimensions for individualization at all positions. Both key
measurements use measurements of pinna, head and torso. 10 typical source positions
of 45 subjects from the CIPIC database were analyzed. In order to relate the PCA scores
and the weighted correlation between listeners anthropometric measurements, a method
for identifying local and global KAMs was introduced. Local KAMs were found by cal-
culating the correlation of PCWs and anthropometric data for each position and sorting
according to their importance. Spectral distortion (SD) defined by Equation 11 (Page
35) was adopted to evaluate estimated DTFs. When using local KAMs, SD was less than
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Variable Measurement Variable Measurement
x1 head width x15 seated height
x2 head height x16 head circumference
x3 head depth x17 shoulder circumference
x4 pinna offset down θ1 pinna rotation angle *
x5 pinna offset back θ2 pinna flare angle *
x6 neck width d1 cavum concha height *
x7 neck height d2 cymba concha height *
x8 neck depth d3 cavum concha width*
x9 torso top width d4 fossa height *
x10 torso top height d5 pinna height *
x11 torso top depth d6 pinna width *
x12 shoulder width d7 intertragal incisure width *
x13 head offset forward d8 cavum concha depth *
x14 height

Table 2: Pinna measurements and anthropometric parameters stored in the CIPIC
database [ADT01]. Marked dimensions are specified separately for both ears.
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5.7 dB. Compared with averaged HRTFs, individualization with local and global KAMs
could reduce SD by 9.4% and 9.7% respectively. Therefore, rough sound localization
was satisfied when using local and global KAMs. However, no significant differences
between the two could be found.

Xie et al. [XZR07] pointed out that the mean values of maximum ITD for male and
female are significantly different. Because the most existing HRTF databases include
measurements and anthropometric parameters from western people, they cannot repre-
sent special features of different individuals or ethnic groups, such as people in China.
Therefore, the authors have begun to build a new HRTF database, which now includes
52 subjects (26 male and 26 female). The results were compared to the CIPIC database
(16 male, 27 female). The mean ITD for Chinese people was significantly less than that
of western subjects.

The models discussed above tend to solve the problem of HRTF individualization using
anthropometric dimensions. Different approaches try to model PRTF or HRTF using
correlation between local source positions or global parameters and PCWs or peak/notch
positions. Especially cultural differences in body’s physical structure could be better rep-
resented by such models. However, the process of connecting physical dimensions with
related model parameters is a complex task and the identification of crucial anthropo-
metric parameters is no always clear. Furthermore, there is currently no large HRTF
database that can be used to presented statistically significant results. This area still
needs a lot more work to be invested. In addition, measurement of anthropometric
dimensions is also time consuming and it is relatively difficult to measure accurately.
Probably, automatic processing of 2D images of left and right pinna could replace man-
ual measurement.

Figure 4a-c indicates the maximum correlation values between first 10 left PCWs and 43
anthropometric features across all subjects and source directions in the CIPIC database.
In addition, the proposed dimension by Rodriguez and Ramirez [Rod05] were included
(Table 1), resulting in 67 different dimensions. First PCA was applied on the entire
database, then the resulting weights of the subjects were correlated with the corre-
sponding anthropometric dimensions. In Figure 4a, a histogram about the maximum
correlation values of each position is depicted. It turned out that the maximum correla-
tion was not as high as expected. The mean correlation value is 65% and the maximum
correlation in the entire database is only 79%. Figure 4b indicates how often the first 10
PCWs are maximum correlated with some physical parameters. No significant difference
between the PCWs was found. Remarkably, the number of PCW1s and PCW2s is very
low. In Figure 4c, the numbers of maximum correlation for each physical parameters
are listed. The head offset forward showed the most correlations in all source positions,
indicated as dimension number 13. Figure 4d shows the correlation between left PCW2
and fossa height left across all source positions.

The results for Figure 4a-c were almost the same when using right ear PCWs. For this
reason, in the model (Section 5) proposed in this work, anthropometric data was not
used, because it is still not proved which physical parameters are dominant for the HRTF.
In order to obtain global parameters that have impact on all source positions, further
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position in CIPIC database.

investigation regarding correlation of the principal weights in relation to different source
positions would be appropriate.
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3.2 Conclusion

Overall, PCA has been used with somewhat encouraging results. The method is not
limited to a particular domain, so both HRTFs and HRIRs can be modeled. Due the
fact that the resulting total variance of the reconstruction can be simply calculated and
controlled by adding or neglecting individual PCs, a desired representation of the data
set can be easily achieved.

Before computing PCA, important decisions have to be made. Firstly, there are several
ways to analyze HRTFs according to its dimensions, e.g. analysis on frequency, source
positions or inter-subject variations. A comparison between the different techniques is
given later in Section 5.2. Secondly, the choice of the input data can have a strong
influence on the results. In general, three different input data for PCA calculations are
found in literature:

1. DTFs by subtracting global mean (database mean) from HRTF magnitude
2. DTFs by subtracting the mean of each subject from HRTF magnitude
3. HRIRs (original or minimum-phase functions)

Before computing the PCA in frequency domain, it is necessary to eliminate the dif-
ferences in measurement conditions within a HRTF database [MG92]. Therefore the
empirical mean must be subtracted from individual HRTFs. This is tolerable because
the mean of an individual has no direction dependent information, thus it is irrelevant to
PCA. Afterwards, the input matrix has to be centered by subtracting off columns means.
This is a crucial operation in order to get relevant values after PCA processing.

As described in [HP08], there are some advantages and disadvantages using HRIRs
or HRTFs for PCA. HRIRs can be grouped into temporal sound events, such as the
initial time delay, pinna response, effects of head and shoulders or reflections from mea-
surement device. Therefore PCA processing and interpretations can be more accurate.
Importantly, no phase model for reconstruction is necessary. On the other hand, the log-
magnitude spectrum of HRTFs is more equatable with the logarithmic sense of human
hearing. However, the responses of certain body parts are coupled in frequency domain
and can not be simply decomposed. In addition, the approach of minimum phase as-
sumption results in HRIRs that are much shorter than the original ones, consequently
pinna and torso contributions are merged.

In summary, the studies discussed above perform PCA decomposition to explain about
90% variance of the original data, while the numbers of selected PCs vary from 5-12.
Radriguez and Ramirez [Ram05] took even 20 PCs describing 99% of the total variance
to approach almost perfect reconstruction. Table 3 summarizes selected HRTF models
discussed above. To provide an objective evaluation criterion for synthesized HRTFs,
spectral distortion (SD) defined by Equation 11 (Page 35) can be calculated.

To use the powerful mechanism of component decomposition, several individualization
techniques based on PCA were established. By subjective adjustment of the compo-
nent weights, localization performance could be significantly increased. In Section 4,
fundamental studies are presented.
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4 HRTF Individualization Techniques

In the last two decades, much research has been devoted to develop various models
for HRTF individualization. In general four methods for adapting non-individual HRTFs
exists. All of these approaches have advantages and disadvantages, but they all have
been shown to improve localization relative using a generalized set of HRTFs. The first
one intends scaling in frequency axis and was proposed by Middlebrooks. When scaling
the dataset, peaks and notches are shifted. Secondly, Directional band equalization could
have great improvement in spatial hearing, because it has been shown that interaction
between bands can also affect localization.

In [Mid99a] [Mid99b], Middlebrooks used scaling of the spectrum along the frequency
axis. Existing peaks and notches are shifted and so inter-subject variability in individual
HRTFs is minimized. By scaling, the inter-subject differences can be reduced to 6.2 dB.
To find a good starting value for the scaling factor is not an easy task. The optimal
scale factor can be estimated from the physical dimensions of a subject. Based on pinna-
gravity height and head width, a scaling factor can be estimated as a starting point for
further adaptation. The number of spectral maxima and minima is often different. It
is shown that certain spectral peaks and notches move as a function of azimuth and
elevation.

Mehrgardt and Mellert have found an optimal scale factor as a function of incidence
angle, while the study by Middlebrooks intends a global scale factor for all positions.
The pinna of individuals are different in many more ways than just a simple scaling,
therefore this approach has limited success.

While in the study by Middlebrooks the magnitude is kept constant and the center
frequencies of spectral cues are shifted, So et al. proposed a method to manipulate the
magnitude in certain regions of the spectrum. In [SL11] six ear-level directions were
manipulated by changing the gains in six different frequency bands (170-680 Hz; 680-
2400 Hz; 2.4-6.3 kHz; 6.3-10.3 kHz; 10.3-14.9 kHz; 14.9-22 kHz). For example, band
1 was amplified and band 2 was attenuated to make a sound event more likely to be
perceived from front. Each of the six directions were manipulated in 18 different ways,
resulting in 108 HRTFs. In a graphical interface the 42 subjects indicated the perceived
sound directions by moving the mouse cursor. Sound stimuli were presented through
headphones and each manipulated stimuli was scaled so that the overall sound pressure
level stayed on the same level. Up to 66% less front-back errors occurred and localization
error decreased up to 70%. The spectral manipulations can be used as a set of add-on
filters to increase directional accuracy. Moreover, the authors suggested to combine the
approach by Middlebrooks and his own to reach less localization error.

4.1 Methodologies for Subjective Adaption

In recent years, several methods for tuning or adaption of generalized HRTFs were
proposed. Nearly all of the them use no accurate phase model, rather the minimum
phase plus time-delay approach. Silze [Sil02] proposed a method in which the transfer
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functions were tuned by a tuning expert. The aim of this study was the reproduction
of multichannel signals over headphone. Since HRTFs for each source position were
selected and changed on the authors experience, this process was very difficult and time
consuming. Listening tests results fully confirmed the selection and tuning of the expert.
However, the main focus of this report deals with the adaptation of the subject itself.

In [QE98], Qian and Eddins described a short procedure for HRTF customization includ-
ing three steps. First, sound stimuli were presented over headphone forming a horizontal
circle at a fixed elevation. Because of individual differences, subjects could evaluate the
stimuli on criteria like externalization (yes / no), azimuth or elevation position (scale
from 1-10). For three positions in elevation (69◦,0◦,−30◦) and each of the 26 HRTF sets,
the circle presentation was repeated. After this the six best matching HRTF sets were
identified by summing up the total rating score and excluding sets without externalization
(about 35min).

In the second phase, a best-matching HRTF was found by paired comparison of the
remaining sets. Each direction was presented by two different sets and the subject chose
the one that sounds closer to the corresponding virtual position. Again, circle presen-
tation for the six HRTF sets was performed and subjects had to reevaluate the stimuli
with a single criterion based on general impression. Finally the best set was calculated
by using the results of paired comparison and cycle presentation (about 18min).

To reduce differences of selected and subjects individual HRTF, the magnitude of the
DTF can be scaled in frequency [Mid99a]. The proper scaling factor was obtained by
paired comparison (about 20min). So, within about one hour, a best-matching HRTF
set from 26 possible sets was found and in addition a scale factor to reduce inter-subject
variation was estimated.

In [HPP08], a novel customization procedure of HRIRs based on self-tuning of PCWs
in median plane was introduced. A HRIR model including 12 PCs was starting point
for further processing. Three subjects participated in the experiment. The number
of tuning parameters was reduced by sorting the PCWs for each position according
to their standard deviation. Based on the assumption that PCWs with large standard
deviation contribute significantly to the inter-subject variation, only the three largest
PCWs according to their magnitude of standard deviation were used for customization.
For each elevation, the subject tuned three PCWs by moving a slider bar. The minimum
and maximum bounds are set to be mean ±3 standard deviation. Thus the customized
model was formed by a linear combination of three adjusted PCWs and nine remaining
ones whose weights were the mean values of all subjects in the database. During the
procedure, a subject could play the adapted HRIR and a reference stimulus.

In [HPP10], the procedure was repeated with nine subjects in the upper hemisphere.
The sphere was divided into two sectors (0-70◦ and 70-180◦) including 3 different source
positions respectively. The median-plane PCWs were modeled using a linear interpolation
of the inter-subject variation. ∆PCWs 1-3 at each endpoints of the sectors were tuned,
so the whole upper hemisphere could be adjusted by the tuning of nine parameters
only. The customization process took about 17 minutes on average. In the end, a short
localization test with 7 elevation angles was carried out with individual, customized
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and KEMAR HRTFs. All subjects reported enhanced localization performance with
customized ones.

Seeber and Fastl [SF03] described a fast method to enhance localization performance.
12 different HRTF sets from AUDIS-catalogue were used in this experiment. 17 sub-
jects without training in acoustics evaluated non-individualized HRTFs based on various
criteria, such as spatiality, localization and externalization, by rating with the numbers
0-9. In the preselection, 5 of 12 HRTFs with greatest spatial perception were extracted.
In the final step, the remaining criteria were compared. Within 10 minutes, a best-
matching HRTF from another person could be found. In general, subjects tend to chose
a HRTF from a subject with a slightly larger head. The authors emphasize that direct
comparison of different HRTFs is a crucial task, because mostly there are only minor
differences between pre-selected sets. Due to direct access, the selection process can be
performed more efficiently. The method could be applicable in teleconferencing systems
or computer games without the need for special equipment.

Shin and Park [Shi08] isolated the pinna responses from the median HRIRs using 45
subjects from CIPIC database. Only the first 10 samples after the direct impulse were
extracted to include pinna activity with largest interject variation. For each elevation,
the model included 4-5 basis functions. In the experiment, 4 subjects tuned the pinna
response of 9 elevation angles in the median plane by changing the weights of the cor-
responding PCs. Because only the left-ear HRIRs were included for processing, subjects
could adjust the balance of left and right channels for reconstruction. Finally subjec-
tive listenings tests with measured, customized and KEMAR HRTFs were carried out.
Front-back confusions were reduced when using customized HRTFs.

Middlebrooks et al. [MMO00] introduced a customization procedure by scaling the
transfer function in frequency. Various scale factors were estimated by transforming the
DTF in time domain, interpolating with a factor of 32 and decimating in the time domain
by a factor of an integer between 15 and 42. This resulted in an impulse response scaled
in frequency by a factor of 0.47 to 1.31. 20 listener evaluated the various DTFs in respect
of vertical localization. The procedure took about 2-4 hours for each subject. It was
shown that the preferred scale factor was highly correlated with the physical scale factor
that could be estimated based on head with and some pinna dimensions. Middlebrooks
recommend to use physical dimensions at first to define a narrow range and then perform
a psychophysical procedure to find the preferred scale factor in that range.

So et al. [SNH+10] tried to reduce front-back ambiguity in non-individualized HRTFs
(KEMAR) by providing several choices for the listener. Several spectral features of
196 HRTF sets were quantified based on previous studies and then clustered into six
near-orthogonal groups for forward and backward directional sounds respectively. In
the within-subject experiment, 15 listener evaluated 7 different HRTF sets in 4 different
source positions. Each stimuli was repeated six times over headphone. Subjects indicated
the perceived incident angle using a hand-held pointer on a sphere. For each of the four
sound directions, the best-matched stimulus was selected. Comparison with KEMAR
stimulus indicated significantly lower front-back confusions from 29 to 10%.

Lindau et al. [LEW10] proposed an approach by real time manipulation of the IDT,
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because non-individualized binaural data can degrade localization accuracy. Onset de-
tection was used because previous listening tests confirmed the robustness of this method.
IDT individualization was performed in real time by using a head tracking system. By
separating the processing of magnitude spectrum and phase, it is possible to apply differ-
ent spatial resolution and interpolation methods. Comb filter effects could be minimized
because cross fading was performed on time-aligned signals. Moreover, the author sug-
gested an anthropometry-based prediction model for an individual ITD correction factor.

Individualization of HRTFs is an iterative tuning process that can be very time consuming
and exhausting. In summary, all studies tend to reduce the parameters as much as
possible, but many of them work only in small regions (e.g. median plane) and few
source positions. The HRTF model in the next section should overcome this limitation
and provide a customization procedure including the whole hemisphere.

5 HRTF Model

5.1 HRTF Database Analysis

Five different HRTF databases were used for calculations, listed in Table 4. Figure 5
indicates the different spatial resolutions. The public domain CIPIC database includes 45
subjects with 1250 source positions and anthropometric measurements of all subjects.
Due to easy access and large amount of data that database is very well known and
often used by researchers. A convenient side effect of the strong use of CIPIC is the
comparability of various scientific works.

Name Department Subjects Positions
IEM Institute of Electronic Music and

Acoustics
30 24

IRCAM Institut de Recherche et Coordina-
tion Acoustique/Musique

50 187

CIPIC* University of California at Davis 45 1250
ARI* Acoustics Research Institute 66 1550
KEMAR* MIT Media Laboratory 1 710
GLOBAL IRCAM, ARI 116 44

Table 4: HRTF databases used in this report. Marked with asterisk include anthropo-
metric measurements.

The ARI HRTF database consists of 66 normal hearing subjects including several an-
thropometric data of 15 subjects, like in the CIPIC database. 1550 source positions were
measured for each listener including the full azimuthal-space (0◦ to 360◦) and elevations
from −30◦ to +80◦. The measurement process for one person takes only 20 minutes,
because of the usage of multiple exponential sweep method (MESM). The goal is to play
a sweep before the end of a previous one. As described in [MB07], the methods allows
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(a) ARI, 66 subjects. (b) CIPIC, 45 subjects.

(c) IRCAM, 50 subjects. (d) IEM, 30 subjects.

(e) KEMAR, 1 subject. (f) GLOBAL, 116 subjects.

Figure 5: Spatial resultion in existing HRTF databases.
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the interleaving of three sweeps and overlapping eight groups of the interleaved sweeps.
For this reason the measurement time can be drastically reduced without artifacts in
HRTF reconstruction. In-Ear-microphones (Sennheiser KE-4-211-2) were located inside
the subject’s ear canal. During HRTF measurement, the head position is monitored con-
stantly. If it is outside a valid range, the recording stops automatically and the subject
gets an acoustical feedback to return into the valid area. For more information about
measurement procedure and recording equipment, please go to ARI website 1.

In order to obtain a larger dataset, a global database was formed with 44 source positions
and 116 subjects. It contains positions that coincide in IRCAM and ARI database.

5.1.1 PCA Compression Efficiency

According to Leung [LC09], the optimal format for the PCA operation is the linear
amplitude form in frequency domain, because the compression efficiency is on the highest
level. Analysis of our data set confirms this statement and shows that this is consistent
over all databases. Figure 6 indicates the compression efficiency of different input data
and databases. When using the linear amplitude in frequency domain, total variance over
90% can be achieved by only 6-7 components. Contrary, more than 20 components are
essential when HRIRs (raw data) are applied. However, it is to be noted, that only minor
differences in compression can lead to significant changes in localization performance,
such as accuracy or front-back confussions.
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Figure 6: PCA compression efficiency of different input data in four different databases:
IRCAM (dashed), ARI (dotted), CIPIC (dash-dot) and GLOBAL (solid line). Four dif-
ferent colors indicate the input data are indicated: HRIR (blue), minimum phase HRIR
(black), DTF with linear spectrum (red) and DTF with logarithmic spectrum (green).
PCA includes all subjects and positions in each database.

1. http://www.kfs.oeaw.ac.at/content/view/608/606/

http://www.kfs.oeaw.ac.at/content/view/608/606/
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(a) Logarithmic DTF magnitude.

0 20 40 60 80
20

40

60

80

100

 

 

IRCAM, entire db
ARI, entire db
CIPIC, entire db
GLOBAL, entire db
IRCAM, one position
ARI, one position
CIPIC, one position
GLOBAL, one position

PCA compression efficiency

PC numbers

va
ri
an

ce
[%

]

(b) Linear DTF magnitude.
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(c) HRIR.
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(d) Minimum phase HRIR.

Figure 7: PCA compression efficiency for different input data when using entire database
(blue) or only one source position (red) in four different databases (IRCAM, IEM, CIPIC
and GLOBAL).

There are studies which perform PCA on each source position separately ([Shi08],
[Ram05], [QE98]), while the remaining ones use the whole database including all direc-
tions for calculating the principal components. One could argue that the main advantage
of processing PCA separately in each position could be that higher variance is explained
by the first components, because of smaller variation in the input dataset. This is only
true, if the logarithmic measure is used (Figure 7a). The opposite is the case for the lin-
ear amplitude. Figure 7b-c shows the amount of variance explained as a function of the
number of principal components used, for logarithmic vs. linear amplitude DTFs used
as input to PCA performed either on a typical single position or at all positions in the
database simulataneously, for three different HRTF databases. PCA of only one position
requires an average of 5 components more than the calculation of the entire database.
No discernible differences were found with calculations using HRIRs or minimum phase
versions (Figure 7c-d). Generally, the more data available, the better will do the PCA
for the linear magnitude. In addition, analysis of structure and fluctuations of PCs and
corresponding PCWs in a database is easier when involving the entire database because



J. Hölzl: HRTF Adaptation 32

the same principal components can be used to model all sound directions.

5.1.2 Correlation of PCs

ARI CIPIC IEM GLOBAL IRCAM
ARI 1.00 0.94 0.78 0.99 0.95
CIPIC 0.92 1.00 0.71 0.96 0.98
IEM 0.86 0.96 1.00 0.78 0.74
GLOBAL 0.97 0.96 0.92 1.00 0.97
IRCAM 0.82 0.95 0.96 0.91 1.00

Table 5: Correlation in percent of left ear PC1 (lower left side) and PC2 (upper right
side) among different HRTF databases.

ARI CIPIC IEM GLOBAL IRCAM
ARI 1.00 0.36 0.55 0.86 0.75
CIPIC 0.85 1.00 -0.38 0.73 0.78
IEM 0.34 0.66 1.00 0.11 0.01
GLOBAL 0.95 0.92 0.51 1.00 0.92
IRCAM 0.96 0.88 0.40 0.97 1.00

Table 6: Correlation in percent of left ear PC3 (lower left side) and PC4 (upper right
side) among different HRTF databases.

ARI CIPIC IEM GLOBAL IRCAM
ARI 1.00 0.80 -0.18 0.96 0.55
CIPIC 0.92 1.00 -0.21 0.86 0.73
IEM -0.14 0.01 1.00 -0.17 -0.17
GLOBAL 0.71 0.69 -0.48 1.00 0.72
IRCAM 0.85 0.96 0.07 0.72 1.00

Table 7: Correlation in percent of left ear PC1 left (lower left side) and PC2 (upper
right side) in the median plane among different HRTF databases. The results of IEM
database are greyed out, because there are no source positions in elevation plane.

According to Middlebrooks et al. [MG92], the differences in subjects and measurement
of various HRTF database should have little effect on the principal components. To
verify this, correlation coefficients of the first 4 PCs between all HRTF databases were
computed. PCA including all subjects and source positions of each database was calcu-
lated using the logarithmic DTF spectrum in order to include only direction dependent
information. Tables 5-6 show the correlation coefficients for each component across the
different databases.

The first PCs correlate strongly across the different databases (mean percentage PC1:
92%, PC2: 88%, PC3: 75%). This is an expected result and is consistent with the theory
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ARI CIPIC IEM GLOBAL IRCAM
ARI 0.84 0.90 0.97 0.72
CIPIC 0.90 0.88 0.82 0.73
IEM 0.85 0.96 0.88 0.69
GLOBAL 0.97 0.95 0.91 0.81
IRCAM 0.82 0.95 0.97 0.90

Table 8: Correlation in percent of left ear PC1 (lower left side) and PC2 (upper right
side) in the horizontal plane among different HRTF databases.

ARI IRCAM GLOBAL
ARI 0.82 (0.63) 0.98 (0.06)
IRCAM 0.82 (0.05) 0.90 (0.99)
GLOBAL 0.97 (0.06) 0.92 (0.99)

Table 9: Correlation in percent of left ear PC1 (lower left side) and PC2 (upper right
side) of the same 44 source positions among 3 different HRTF databases. Logarithmic
spectrum was used for PCA, values in parentheses indicate the correlation coefficients
when linear spectrum was used.

of PCA. However, closer inspection reveals that PC3 and PC4 in the IEM database have
almost no correlation with corresponding PCs of other databases. The reason for this
is that IEM database only contains 24 positions in azimuth plane and the correlation of
PCW2-4 to all other databases is very low, because these principal components mainly
contain information about elevation. When the calculations are performed without log-
arithmic scale of the magnitude, the results are significantly lower. The reason could
be that the logarithm compresses the HRTF and therefore hides the detail in the HRTF
function, thus making it easier to model.

It has to be noted that the spatial resolution of the databases is different. For this reason,
the correlation of PCs was calculated again using three selected direction sets. These
were: the set of common directions across all databases, the set of sound directions in
the median plane and the set of sound directions in the horizontal plane in the three
databases. Table 7 and 8 shows the results for the median and the horizontal plane,
which are in general sampled differently in each database. Generally, the values have
not changed compared to the previous case. Figures 8 and 9 indicate the resulting
PCs with logarithmic and linear spectrum respectively. In addition, PCs of 44 specific
source positions that coincide in IRCAM, ARI and GLOBAL database were calculated.
Table 9 shows that the correlation coefficients are increasing when only the same source
positions are used. It can be seen, that the resulting PCs of positions in horizontal plane
are almost the same for all positions and for 44 specific positions. Consequently, the
first component describes the variance in the horizontal plane, no matter what positions
are used for PCA.

It has to be noted that in some cases the resulting PCs and PCWs are mirrored. The
reason for this is that PCA returns a principal component basis that is rotation invariant.
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It can be that depending on the input set, that different rotations version of basis
emerge. However, the reconstruction matrix remains still the same, because the signs
and potentially the magnitude of the corresponding PCWs is also changing. In our case
a rotation of 180 degrees occurred which was corrected in the following figures to ensure
better visibility.

5.1.3 Variation of PCWs

Hwang and Park [HP08] investigated the characteristics of PCWs for the left-ear HRIRs
in the median plane. Only the first 1.5 ms after the direct pulse were used to include the
effects on pinna, head, shoulder and torso. PCA of HRIRs in the CIPIC database revealed
that PC1 had positive and negative mean PCWs at certain elevation values, thus this
component provides sound cues for vertical perception. PC2 indicated cues for front-
back discrimination, because the mPCWs were positive in frontal region and negative
in the rear section. We also inspected our databases but we took the logarithmic DTF
magnitude of all source positions for further analysis. Figures 10 and 11 indicate the
distribution of the first six left ear PCWs in the median and horizontal plane respectively.
It is clear to see that the range of weights in ascending number is getting smaller, because
the variance of the corresponding PCs decreases.

Median Plane PCW1 left has positive and negative values at certain position in
elevation plane, this might be a major localization cue for up-down discrimination. PC1
has positive mean PCWs (mPCWs) above 60◦ and negative values below 80◦. This is
almost consistent with the results by Hwang and Park. PCW2 is positive in lower frontal
region and negative above the head. This could be a cue for up-down discrimination.

Horizontal Plane It is obvious that left PCW1 amplifies the corresponding component
on the ipsilateral side (0 - 180◦ azimuth) and decreases it on the contralateral side. PCW2
tend to have negative values in frontal and positive values in rear positions. This could
be a cue for front-back localization. The variation of the remaining weights is more
complex and need to be considered in more detail.

Ear Symmetry Some of the previous models focusing on the median plane were based
on the simplification of ear symmetry ([Shi08], [HPP08], [HPP10]), although the left-ear
and right-ear HRTFs are slightly different, particularly in high frequencies. Thus, PCWs
of each ear in all databases were examined. Figure 12a indicates the weights for left and
right ears across all source positions in the IRCAM database. Obviously, the weights
across almost all positions appear to be symmetrical. Closer inspection of the PCWs
in the median plane (Figure 12b-f) reveals that all left and right ear PCWs are almost
identical. This is also true for the remaining weights with lower variance. Moreover,
Morimoto [Mor01] confirmed that the perception in elevation mainly depends on the
monaural characteristics, consequently assuming symmetrical ears when modelling in
median plane can be adequately.
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5.1.4 Least Squares Reconstruction of HRTFs

In order to study the effect of different numbers of weights on the reconstruction er-
ror, the method of least squares can be applied. For each frequency f (0, ..., fs

2
) the

reconstructed HRTF is calculated by

N∑
j=1

Xfj · wj = hf , (7)

with X as principal component matrix, w as vector of principal weights and h as the
reconstructed HRTF. Index j goes through the N principal components and there are
fs
2
equations. The error e can be minimized by

min
e
||h−Xw||2. (8)

By introducing XT in Equation 7, the weights for reconstruction with smallest error is
obtained:

(XTX)w = XTH (9)

w = (XTX)−1XTH. (10)

However, it must be ensured that the matrix (XTX) is invertible. First, it was inves-
tigated how the number of observations has influence on the reconstruction error. To
this, PCA was applied on data sets with different numbers of subjects.

Spectral distortion (SD) is introduced which has been used to evaluate speech recogni-
tion, but it can also describe the errors of HRTF estimation:

SDφ,θ =

√√√√ 1

N

N∑
j=1

|hφ,θ(fj)− ĥφ,θ(fj)|2 [dB], (11)

with hj and ĥj as measured and estimated HRTF log magnitudes (in dB) and N as the
number of points in frequency domain. Takanori [TSK99] suggested that the SD of an
estimated HRTF should not be greater than 5.7 dB.

Two groups of subjects were defined, a training and testing set. For example, if a
database consists of 50 subjects, the training set was constructed calculating the re-
construction error of the first four subjects and altering the number of training subjects
from 1 to 50. The testing set was applied by getting the reconstruction error of the last
4 subjects in the database and altering the number of training subjects from 1 to 46.
Thus, all HRTFs in the testing set were excluded from the training set.

For a start, the influence of whether a HRTF belongs to the training set on the re-
construction error was investigated. Although PCA provides an orthogonal basis that
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in principle would allow the projection of arbitrary datasets, we wanted to verify that
reconstruction error remains low even for HRTFs outside the training set. Even if only
two data sets are used for training, the PCWs of any other person in the database was
predicted correctly. Indeed, the projection upon the basis yields similar error for people
that belong to the training and the test set. Apparently the least squares prediction of
the PCWs in Equation 10 works so well that it is not necessary to use a larger training
sets. This also confirms the thesis that for any arbitrary HRTF, a set of correct principal
weights exists and the HRTF reconstruction can be ideal when using all PCs.

In the next step, the PCA reconstruction was limited, so e.g. only the first 10 PCs and
corresponding estimated PCWs were used for HRTF reconstruction. Unlike before, it
was shown that the number of observations has influence on the reconstruction error.
Figure 13 indicates the fluctuation of the reconstruction error, when different numbers
of PCs are used in the CIPIC database. The less principal components are used for
reconstruction, the more training data is required to minimize the reconstruction error.
When only one principal component is used, the amount of the training set has almost
no influence on the error. The same is true if all components are used, because the
error is already minimal.However, analysis of all databases shows that the error is not
always monotonically decreasing. In some cases, there are local minima, consequently
involving more training data does not contribute to the HRTF reconstruction. Further
investigation should be done here.

Figures 14 and 15 show the same calculations in the ARI and IRCAM database. Contrary
to CIPIC, the amount of training data has also influence when only 1 PC is used.
Particularly striking is the sudden decrease of the error when training subject number
28 is included in the IRCAM database (Figure 15d). This phenomenon was only found
in this database. Perhaps the dataset of this subject is so extremely important for the
least-squares algorithm and so decreases the error for all other test subjects.

In the final step, individual source positions were excluded from the training data. This
was accomplished by introducing a density grid that can be modified from very close to
far apart. Figure 16 shows the results of the reconstruction error as a function of density.
It reveals that the smaller the spatial resolution for the training, the higher is the error.
As already mentioned, when using more PCs, the error can be reduced.
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(e) PC1 for horizontal plane.
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(g) PC1 for median plane.
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Figure 8: Variation of left ear PC1 and PC2 in each database when calculating PCA with
source positions of the entire database (a,b), at specific 44 positions (c,d), in horizontal
(e,f) and in median (g,h) plane respectively. Logarithmic magnitude spectrum was
used for PCA.
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(c) PC1 for the same 44 positions.
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Figure 9: Variation of left ear PC1 and PC2 in each database when calculating PCA with
source positions of the entire database (a,b), at specific 44 positions (c,d), in horizontal
(e,f) and in median (g,h) plane respectively. Linear magnitude spectrum was used for
PCA.
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Figure 10: Variation of first six left ear PCWs in the median plane of four different
databases: CIPIC (red), ARI (green), IRCAM (blue) and GLOBAL (yellow).
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Figure 11: Variation of first six left ear PCWs in the horizontal plane in four different
databases: ARI (green), IRCAM (blue), IEM (red) and GLOBAL (yellow).
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Figure 12: Ear symmetry: Left (blue) and right ear (red) PCWs in the median plane.
IRCAM database with logarithmic DTF magnitude was used for PCA.
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Figure 13: Mean error overall source positions when using different numbers of PCs
for HRTF reconstruction in CIPIC database. Blue and red lines indicate training and
testing set respectively.
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Figure 14: Mean error overall source positions when using different numbers of PCs for
HRTF reconstruction in ARI database. Blue and red lines indicate training and testing
set respectively.
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Figure 15: Mean error overall source positions when using different numbers of PCs
for HRTF reconstruction in IRCAM database. Blue and red lines indicate training and
testing set respectively.
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Figure 16: HRTF reconstruction error as a function of density that is used for the
training data in GLOBAL database. Blue and red lines indicate training and testing set
respectively.
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5.2 Evaluation of Input Matrices

It has been shown that different structures of input matrices lead to different results.
Consequently, three structures for input matrices including three different input data
were compared and evaluated.

PCA 1subjects

signal_length * positions * 2

L R L R L R . . .

L R L . . .

pos1 pos2

. . .

Figure 17: PCA1 input matrix with corresponding dimensions.

In the first approach, a matrix PCA1 was formed with dimension presented in Figure
17. The columns define the number of people and the lines show their HRTF sets. All
HRTF pairs are stringed together for each position. The length of each signal depends on
the choice of the input signal. When using HRIRs, the length is database-specific (200-
512 samples, but when choosing DTFs, the length depends on the number of Fourier
coefficients used for FFT.

In Figure 18, the standard deviation of the weights of the first principal component
across all subjects is shown. Because the input data was centered before PCA, the mean
of these weights is zero. Ideally, the graph shows a Gaussian normal distribution.

It is necessary to prove that the weights are within a proper range. An outliers can
adulterate the mean value and increase the standard deviation. This results in a more
difficult adjustment, because the tuning range has increased dramatically. An outlier can
be caused by measurement errors or unique anatomical characteristics of a person. In
this implementation an outlier detection was added that automatically deletes unusual
weights for the first principal component. Afterwards, PCA is performed again without
the detected entity.

The major advantage of this structure is that PCA returns only one weight per subject
for each principal component. Consequently, only one weight can alter all positions of
a person. However, the more positions are given for one person, the lower the variance
of the first components. When using 10 PCs for reconstruction, only 50-60 percent of
variance can be achieved. In Table ??, the total variance of the first 10 components for
different input data of ARI database is listed.

In order to enhance variance for the first components, band-limiting can be used. The
HRTF is smoothed in frequency domain by calculating the Fourier transform of the
frequency spectrum but using only limited Fourier coefficients for inverse transformation.
According to Kulkarni [KC98], the localization performance is not significantly affected,
even when the number of Fourier coefficients is reduced from 256 to 16. However, the
result is not overwhelming. When using a database with 116 subjects and a trajectory
with 6 source positions, the components are increased only by up to 10 percent.
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Figure 18: Histogram of the weights for the first principal component. Global database
with 116 subjects and DTFs of 7 source positions (15◦ azimuth, −30 - 45◦ elevation)
was used for PCA input data.

As shown in Figure 19, the second structure has a simpler construction. Each row of
the matrix PCA2 consists of one signal. For that reason, the matrix has a lot of more
rows as columns. This turns out to be a good choice for PCA, because the variance of
the first PCWs is much more higher than using the structure of PCA1. However, it is
not possible to adjust the weights as easy as in the first format. Instead of receiving one
weight for each person, each column has its own principal weight. Therefore the mean
and standard deviation of the first PCs can not longer used as a dimension for adjusting
one subject. In fact, each ear, position and subject has its own weights. In order to
obtain a suitable distribution of weights, the matrix has to be grouped by subjects or
positions.

PCA3 has almost the same structure as PCA2, except that it generates weights for
both HRTF pairs. This could lead to an improvement in the adjustment process because
changing a particular weight has impact on both ear signals simultaneously.

5.3 Methodology

The model for individualization of HRTFs presented in this work, is based on the stud-
ies of Kistler et al. [KW92] and Rodriguez et al. [Rod05]. HRTFs are assumed to
be minimum-phase functions [OS75] and ITD will be estimated as a constant, thus fre-
quency independent delay. In previous experiments headphone equalization was a critical
issue. Only small variations in positions of the headphone can lead to serious artifacts
and perceptual distortions. According to [CJ98], a possible solution for this problem
is to short circuit the pinna by using insert earphones. For this model, the headphone
transfer function was equalized because this function is closely related to localization
performance.

The major disadvantage of the discussed models in Section 3.1.1 is that tuning can only
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be performed on one position or on a small region of positions, such as trajectories. If
another position should be adjusted, the PCA must be recalculated with new HRTFs.
By using a global model, all positions in the database are included for PCA. Then the
subject can chose one position of interest for further tuning. Only the weights for the
selected position are adjusted.

In order to allow more scope and flexibility for adjustment, weights of surrounding source
positions can be involved. The subject controls the expansion of the included weights by
drawing a virtual rectangular which enlarges the source position with maximum ±180
degrees (Figure 20). Consequently, if the slider for azimuth extension is set as a maxi-
mum, all positions in azimuth are involved. According to Kistler and Wightman [KW92],
the first PC mainly contains information about interaural intensity differences. Using the
structure PCA2 or PCA3 with all azimuth positions for adjustment, this statement
can be easily reproduced. When looking at the values of PCW1 more precisely, one
can see that the weights for left and right ear have almost the same values, but with
different signs. In summary, the first component provides the biggest variance between
the source positions, so in azimuth plane this means mostly level differences through
head shadowing and diffraction.

PCs that do not contribute significantly to the reconstruction are excluded. Thus only
the first 10 PCs were used with a variance of 70-90 percent, but this very much depends
on the database and source positions. This coincides with previous studies ([KW92],
[MG92]).
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Figure 19: Input matrices PCA2 and PCA3 with corresponding dimensions.
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Figure 20: Extension of selected weights (red plane) used to adjust an individual source
position (green point).
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Figure 21: Overview of tuning process with various input data. Red path indicates the
global model.
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5.4 Self Tuning of PCWs

Figure 22: Methodology of adjusting the principal weights by sliders.

The principal task is to provide the test person as few information as possible while
having the possibility to tune the HRTF as much. Thus it is a major decision which and
how many PCs the subject should adjust. The PC corresponding to a large standard-
deviation of PCWs contributes significantly to the inter-subject variation [HPP08]. For
that reason, only the first 10 PCs with the largest standard-deviation for each elevation
is displayed to the test person.

In the test procedure the listener could tune the weights for reconstructing the HRTF on
his own through a MATLAB GUI (Figure 25). In order to prevent the subject from stress,
there is no time limit for adjusting the weights. However, the process is time-consuming
and exhausting, because of the high concentration is required.

In order to adapt the weight of a component, a slider has to be changed. At the
beginning, the slider position is in the middle (mean across all weights of the component).
The minimum and maximum values are set to be mean ± 3 standard deviation of each
PCW. While changing the slider position, different weights are used for reconstruction.
A major advantage of using PCA1 is that all source positions in a sound trajectory
can be altered by changing only one slider. Consequently adjustment process can speed
up. In PCA2 and PCA3, one source position can be tuned. If the slider is left in
the middle position, an averaged weight across all subjects is used for the corresponding
component. In this case, the reconstruction returns only a generalized HRTF set.

Every time when the subject changes the slider positions, a new HRIR pair are calculated
through Inverse Fourier Transform of the adapted HRTFs. The prior subtracted mean
is added again to the DTF to obtain the HRTF. The phase information is obtained by
calculating the Hilbert transform of the corresponding logarithmic magnitude spectrum.

In Figure 23, the changes in logarithmic magnitude spectrum for each component is
shown. It is easy to see that for example the first component represent just a constant
scaling over the whole frequency range. The changes in the other weights are more
complex.

The subject can listen to tuned HRIRs on every change or press the "Play" buttons to
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Figure 23: Mean value (red line) and minima/maxima amplitudes (blue lines) of left ear
magnitude spectrum when changing the first five PCWs separately (a-e) or simultane-
ously (f). IRCAM database with source position 90◦ azimuth and 0◦ elevation was used
for PCA.
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compare the various stimuli or listen to the original HRTF as a reference. A broad band
noise is used as stimulus, but several other sounds can be selected.

If the subjects measurement data are available in the database, the button "My Solution"
appears on the interface. This function sets the slider positions to the subjects weights
obtained from PCA. After finding appropriate slider positions, the customized data can
be saved through pushing the "Save" button and is stored in the filesystem.

There are some discrepancies between tuned and individual HRTFs. This might be
resulted in the limit of parameters (incompleteness of the customization process) and
limited principal components for reconstruction. When calculating the DTFs by removing
subjects mean, in the reconstruction the mean of the test person is not known. Thus,
the mean of all subjects mean values is added to obtain the HRTF. Moreover, in PCA2
only the left ear HRTFs are used for PCA, so the error of the right ear HRTFs increases
dramatically. However, the purpose of this project is not to recover the exact measured
HRIRs but to customize generalized HRTFs for improved localization performance. The
error increases as the number of basis functions is reduced. When using only few PCs
(above 5), significant differences in the spectral details are visibly.

5.5 HRTF Tuning Tool

choose

database / # subjects

Tuning Tool
GUI

Admin / Test mode

choose

PCA structure

Plot

Listen

Tune

Time Domain
measured / reconstructed HRIR

Frequency Domain
measured / reconstructed HRTF

Measured
HRIR

Setup
xml-File

choose

position / trajectory
choose

PCA input data

Generalized
HRIR

Tuned
HRIR

Slider Adjustement
for first 10 PCWs

Solution
for first 10 / all PCWs of 

particular subject

PCA

Figure 24: HRTF Tuning Tool Tool: Overview of functionality.
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The HRTF tool works with three modes. Either a single static source position, a sound
trajectory or the entire database can be chosen for tuning process. The trajectories
consists of 5-20 static positions in a coherent way e.g. all available elevations for a
specified azimuth position or the other way around.

Figure 24 provides an overview of the main functions of the HRTF tuning tool. At
startup, the ID of the participant has to be specified. The subject has to choose the
database and a static source position or trajectory of interest. Afterwards the first 10
significant PCWs are calculated and selected for the slide-bar automatically. Now the
test person can begin listening to stimuli and adjust sliders.

Three different structures and data for the PCA input matrix can be chosen, described
in section 5.2. Additionally, following features can be enabled:

• Number of FFT points for HRTF
• Band limiting of the PCA input matrix
• Outlier detection for the first weights
• Expansion of PCA weights (in azimuth and elevation plane) for tuning a source position
• Selection of different sound stimuli
• Headphone equalization (for AKG "K271 Studio" and "K272 HD")
• Plots of HRIRs, HRTFs and PCWs

After PCA processing, the variance of each of the first 10 components is indicated on
the right side. By changing the number of components for reconstruction, the total
variance of the components can be obtained. The integration of HRTF databases can
be configured in an external setup file with in xml structure.

Figure 25: MATLAB GUI for Experiment (Admin view). The various settings can be
faded out during listening tests, so only the slider box in the middle is visible.
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6 HRTF Analysis Tool

Figure 26: HRTF Analysis Tool in MATLAB: GUI in standard view.

For visual and aural inspection of HRTF data, a tool in MATLAB was built. In general,
the software supports people who are listening and analyzing HRTF databases. The
implementation provides measurement data of five different departments that are listed
in Table 4 on Page 28.

Figure 27 gives an overview of the main functions. The tool is designed so that new
databases can be added with little effort. A configuration file contains the relevant
information for each database in xml structure. It is necessary to add the import function
and adapt database specific code, such as anthropometric dimension and measurement
positions. Two matrixes have to be formed with the structure

• DB as a 4D-matrix (subjects× sourcepositions× ears× hrirs),
• ANGLES as a 2D-matrix (sourcepositions× 2) that specifies the source positions

with values for azimuth and elevation.

If a new database fits this structure, all operations in the GUI are working without
adaption. A brief instruction for adding a new database can be found in readme.txt file.

6.1 Basic Operations

In the first step, a database has to be imported. The mat-files of the entire measured
data are read from the filesystem and stored as a single matrix in global workspace.

After import, it is possible to choose a subject and pick elevation and azimuth positions
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Figure 27: HRTF Analysis Tool: Overview of functionality.

from a listbox. On the right side several graphs are available for visualizing HRIRs and
HRTFs. By default, the left and right HRIRs are presented in time domain and the
calculated HRTFs are visualized in frequency domain. The FFT is processed with 1024
points. Because of the reel input signal, the FFT output magnitude returns symmetry,
thus a 512 point HRTF magnitude is obtained.

These diagrams are available for head-related impulse responses:

• Overall interaural time difference of all azimuth positions of selected subject
• 2D diagram of all azimuth HRIRs of chosen subject: a red line indicates the current

azimuth position
• 2D diagram of all elevation HRIRs of chosen subject: a red line indicates the current

elevation position
• Minimum phase version of HRIR

In addition these diagrams are available for head-related transfer functions:

• Directional transfer function (DTF) and HRTF
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Figure 28: Matlab GUI for analyzing PCA data for a source position.

• 2D diagram of all azimuth HRTFs / DTFs of chosen subject: a red line indicates the
current azimuth position
• 2D diagram of all elevation HRTFs / DTFs of chosen subject: a red line indicates the

current elevation position

It is possible to expand each of the four diagrams and switch between linear and loga-
rithmic view. By selecting one position and changing the subject, it is easy to discover
the inter-subject differences of head-related transfer functions.

Peaks and notches of the magnitude of HRTF or DTF can be marked with an algorithm
that finds local maxima and minima. Moreover, the threshold for detection can be
adjusted. The magnitude can also be smoothed by reducing the Fourier coefficients in
the reconstruction.

Several listening tasks can be executed for the selected subject:

• Play HRIR of chosen position
• Play HRIRs of chosen position and all subjects
• Play all available azimuth HRIRs of select elevation angle
• Play all available elevation HRIRs of select azimuth angle
• Play front-back HRIRs
• Play up-down HRIRs

6.2 PCA Operations

The implemented PCA functions are based on the current selection of database, subject
and source position. Four different data analysis are described below:
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Figure 29: Matlab GUI for visualizing correlation between principal component weights
and anthropometric data for left and right ear respectively. The yellow background color
indicates a correlation of more than 60 percent.

• PCA on entire database
• PCA on entire measurement data of subject
• PCA on all subjects of selected position
• PCA on all subjects of selected position and visualization of correlation with existing

anthropometric data (only for CIPIC and ARI)

6.3 Visualizing Correlations

• Correlation of weights and principal components
• Correlation of weights and anthropometric data
• Fluctuations of PCWs of all subjects across all elevations

7 Conclusion

Based on existing studies about synthesizing HRTFs, an objective model for HRTF
was presented. The report reviews previous methods for HRTF individualization and
discusses the importance of using adapted models for accurate localization. Despite
current limitations of such models, the research of 3D virtual auditory display has a
promising future.

In order to understand the behavior and variations of PCWs, existing HRTF databases
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were analyzed. Further investigation how certain PCWs affect localization would be ap-
propriate. The Least-Squares method confirms that any arbitrary HRTF can be modelled
by adjusting PCWs. For a better statistical validity, an algorithm such as Bootstrapping
should be used.

A HRTF model that uses PCA was proposed. It was shown, that individual HRTFs
for each source position or sound trajectories (4-6 source positions) can be modeled by
simple tuning of preselected general basis functions. A subjective localization test should
be carried out to assess the performance of different conditions. By using the algorithm
of LyTTE project 2 which simulate the acoustic of rooms, externalization may well be
improved. An important step would be an interpolation between the measured source
positions.

A toolbox for analyzing and listening HRTF data in MATLAB was introduced. A key
benefit would be a larger HRTF database of different ethnic groups in order to analyze
cultural and gender differences.

Another way to learn HRTFs from other persons or to improve the own one would be a
mobile app which should simply present stimuli and track subjects performance over a
long period time.

2. LyTTe is an open-source project which deals with architectural acoustics. More information on
http://sourceforge.net/projects/lytteproject

http://sourceforge.net/projects/lytteproject
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A Principal Component Analysis (PCA)

In some problems it is advisable to use a method that classifies the various dimensions on
a given amount of data according to their relevance. The Principal Component Analysis
(PCA) exactly returns this result [Jan04]. It is a useful statistical technique to find
specific patterns in mass of data with high dimension. Basically, correlated variables are
transformed into uncorrelated ones, called principal components. The aim of PCA is
to reduce dimensions and calculate components with largest and lowest impact on the
data record. Often, several components of a data set are irrelevant, because they do
not provide more information or are almost constant. If the new components are found
through transformation, the data set can be represented in another way, usually by fewer
dimensions. Thus, PCA compresses the data without discarding significant information.

PCA is generally an analysis of the variance in the data set. It highlights the direc-
tional information, so that the first PCA component has the greatest variance, the other
components have a decreasing variance with respect to the orthogonality to all other
components.

If the record has been released from mean before the transformation, the PCA compo-
nents are uncorrelated, thus normally distributed. For example, the origin of a coordinate
system including a three-dimensional data, is set to the focus of the data before transfor-
mation. In a data matrix, the column means must be subtracted. Only this way ensures
that the first components are along the largest variance.

A few new definitions are introduced: Component scores are the transformed variables
and loadings describe the weights to multiply the normed original variable to get the
component score.

The important decision criterion in PCA is the deviation of the components of a vector
to its arithmetic mean, also known as the variance. Similarly, the covariance is defined as
the difference between the variances of two vectors. If the value is positive, it indicates
that the two dimensions are increasing together. If the covariance is zero, the measured
dimensions are independent of each other [Lin07].

The correlation coefficient describes the linear relationship between two variables, giving
a value between -1 and 1:

r =
Cov(x, y)√
V ar(x)V ar(y)

. (12)

There are two common methods to calculate the principal components of a data set.
PCA can be performed by eigen value decomposition of a covariance matrix or singular
value decomposition.



J. Hölzl: HRTF Adaptation 61

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

component

re
la

ti
ve

va
ri
an

ce
[%

]

(a) Relative variance of first 10 PCs.

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

15

20

 

 

Original

Reconstruction

m
ag

n
it
u
d
e

[d
B
]

frequency [kHz][%]

(b) PC 1, 73.8% variance.
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(c) PC 1-5, 86,2% variance.
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(d) PC 1-10, 91.9% variance.

Figure 30: Reconstruction of one left ear DTF (90◦ azimuth, 0◦ elevation) in IRCAM
database by comparing different numbers (1, 5, 10) of principal components. Red and
blue lines indicate reconstruction and original data respectively.

A.1 Covariance Matrix

The first step is to subtract the column mean of each column of the input data matrix
X (N×M). N denotes the sample length andM indicates the number of observations.

B = X− u ∗ h, (13)

where u indicates the mean of the input matrix and h is a 1×M row vector of all 1’s.

The subtracted means should be buffered, because it is essential for reconstruction and
has to be added again. Next, the covariance matrix C (M ×M) is calculated as

C =
1

N

∑
B ∗B∗ . (14)

If the variables are not centered, this matrix can not longer be regarded as the the
covariance matrix. Consequently the variables are not statistically decorrelated, but
remain orthogonal [LJMG00].
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As each vector in C is compared to all others, it describes how much the dimensions
vary from the mean with respect to each other. The matrix is square and symmetrical
about the main diagonal. It consists of all the covariances of different dimension. If the
non-diagonal elements have positive values, the data variables are increasing together.

The eigenvectors V of the covariance matrix are unit vectors and linearly independent.
They are obtained by

V−1 C V = D, (15)

with D as a diagonal matrix including the eigenvalues of C. By sorting the matrix D
and V according to the largest eigenvalue in descending order, the corresponding part
of the variance of an eigenvector relating to the total variance can be calculated.

The eigenvector with the highest eigenvalue is called the first principal component, the
second component indicates the direction of the second biggest variance, and so on. In
[QE98], it is described that the first component mainly contains azimuth information,
and the second and third components are more associated with high and low elevations.

The q eigenvectors of C are the basis functions vi. If q = N , the original data can
be fully reconstructed. However, the objective of PCA is to reduce the dimensionality,
therefore a reduced number of dimensions L (1 ≤ L ≤ N) can be chosen for a specific
situation. For example, thus much components, such as 90% of the data is presented.
Madsen [MH03] explains that also the stability of the singular values can be a criterion to
set the number of components. Later, it is shown that only 5-10 components (depends
on the input data) are sufficient for a close approximation of a HRTF. Note that the
distribution of the PCWs becomes smaller as the eigenvalues decreases.

The scores Z are calculated as

Z =
B

s ∗ h
, (16)

with s as roots of the diagonal values of covariance matrix C. The projected score

Y = W∗ ∗ Z, (17)

with W∗ as conjugate transposed matrix of W. Finally, the approximation of the original
data can be expressed as

X̂ = B̂ + u ∗ h. (18)

A.2 Singular Value Decomposition (SVD)

The Singular value decomposition is a powerful data analysis method and for that reason
relevant to PCA. First of all, a real (n×m) matrix X where n ≥ m can also be written
as

X = U Γ VT, (19)
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with

• U as a n×m matrix with n observations and m variables,
• Γ as a m×m diagonal matrix with nonnegative and real values (singular values), also

known as the square roots of the eigenvalues,
• V as a m×m matrix, the eigenvectors,
• r as the rank of X (number of linear independent rows of the matrix).

Matrices U and V have orthonormal columns so that UTU = Ir and VTV = Ir.

From X, two positive-definite symmetric matrices can be formed:

XXT = UΓVT VΓUT = UΓ2UT, (20)

XTX = VΓUT UΓVT = VΓ2VT. (21)

Assuming n ≥ m, XXT (n×n) and XTX (m×m) share m eigenvalues, the remaining
n−m eigenvalues will be zero [MH03]. The covariance matrix of the input data X can
be calculated as

C =
1

n
XXT =

1

n
UΓ2UT (22)

and the transformed data can be expressed as

Y = ŨTX = ŨTUΓVT. (23)

Mostly, the number of features is bigger than the number of samples (m � n), like in
image, text or sound processing [MH03]. Thus the covariance matrix C becomes very
large. In this case, it’s sufficient to decompose the smaller m×m matrix

D =
1

m
XTX. (24)

In the HRTF model presented in this report, mostly the number of examples is smaller
than the number of variables (m < n), but if the PCA is performed with a total HRTF
database as input matrix, the routines in MATLAB can slow down or interupt. As in
[MH03] mentioned, this problem can be avoided using the transposed input arguments
on the matlab function svd().
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