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Abstract

The detection of singing voice segments within music signals is an important

object of research in the field of music information retrieval, since it serves as

an essential pre-stage for applications like singer identification, lyrics recog-

nition, singing melody extraction and many more.

The objective of this thesis is the implementation and evaluation of an

pattern recognition system with the capability of detecting singing voice in

music signals. For this purpose, a support vector machine classifier is uti-

lized in conjunction with MFCC features, including also long-term features

of MFCCs and their delta features. Furthermore, an energy-based feature is

proposed. Feature subset selection has been carried out by means of linear

discriminant analysis together with sequential forward and backward elimi-

nation subset space search strategies. The resulting subsets were evaluated

in combination with the classifier using 10-fold cross-validation, resulting in

a mean accuracy of 75.6 % with a standard deviation of 2.5 % for the best

subset.

Finally, the system was tested with a database, which was provided by

Mathieu Ramona and obtained a mean accuracy of 69.7 %.
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Kurzfassung

Die Detektion von Singstimmen innerhalb eines Musiksignals ist ein wichtiger

Forschungsgegenstand im Bereich des Music Information Retrievals, da sie

eine entscheidende Vorstufe für Anwendungen wie Sänger-Identifikation, Lied-

text-Erkennung, Gesangs-Extraktion und viele mehr darstellt. Das Ziel dieser

Arbeit ist die Implementierung und Beurteilung eines Mustererkennungs-

Systems mit der Fähigkeit, Singstimmen in Musiksignalen detektieren zu

können. Hierzu wird ein Support Vector Machine Klassifizierer in Verbindung

mit MFCC-Merkmalen, sowie Langzeit-Merkmalen von MFCCs und ihren

Delta-MFCCs, verwendet. Darüber hinaus wird ein weiteres Merkmal auf-

gestellt, welches auf Energie basiert. Die Auswahl von Merkmals-Teilmengen

wurde mit Hilfe der Diskriminanzanalyse und den Suchstrategien der sequen-

tiellen Forwärtsselektion sowie der Rückwärtseliminierung durchgeführt. Die

ermittelten Teilmengen wurden mit Hilfe des Klassifizierers und einer 10-

fachen Kreuzvalidierung evaluiert. Die beste Merkmalsmenge erreichte eine

mittlere Genauigkeit von 75.6 % bei einer Standardabweichung von 2.5 %.

Zum Abschluss wurde das System mit einer Datenbank, die von Mathieu

Ramona bereitgestellt wurde getestet, und erreichte hierbei eine mittlere

Genauigkeit von 69.7 %.
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Chapter 1

Introduction

The vast quantity of music data that can be found in online music stores or

other music collections requires methods to handle and access this data via

perceptive criteria. This field of research about the automatic extraction of

meta data from music is called music information retrieval (MIR).

Especially the singing voice is an essential element of western popular mu-

sic. Therefore, diverse applications based on the detection of singing voice

are objects of research: singer identification [1–5], singing melody extrac-

tion [6–8], singing performance/quality evaluation [9,10], singing voice tran-

scription [11,12], query-by-singing/humming [13], lyrics recognition [14], au-

tomatic identification of singing language [15], etc. The detection of singing

voice segments functions as pre-processing for the applications referred to

above.

In the field of speech recognition, there has been a lot of research effort

since the nineteen-fifties. However, the application of these developed sys-

tems to singing voice has not achieved satisfactory results even though the

vocal apparatus is the same. Speech and singing differ significantly with

regard to production and perception. Singing voice for instance contains ap-
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proximately 90 % voiced sounds, whereas speech embodies only 60 % voiced

and 40 % unvoiced sounds for the English language [16]. Another unique

feature primarily of opera singing is the so-called singer’s formant, which

manifests itself in a frequency emphasis around 2-4 kHz. It helps the voice

to be clearly audible in the presence of the orchestra, without amplification

of the singer’s voice [17,18].

The definition of features, which make singing voice content distinguish-

able is complicated by the fact, that singing voice exhibits primarily harmonic

partials, which overlay with the harmonic portions of accompanying music

instruments.

The objective of this thesis is the implementation of a pattern recognition

system for singing voice detection, i.e. the classification of segments into

singing voice and non singing voice segments.

The thesis is organized as follows: chapter 2 will briefly outline the basic

elements of a pattern recognition system with particular emphasis on content,

which plays an important role for singing voice detection and was utilized

within the scope of this thesis. In chapter 3, the implemented singing voice

detection system will be discussed in its design. This chapter also addresses

the tuning and setting of classifier parameters as well as the selection of

feature subsets. The results of the implemented system on a test database

which was assembled and provided by Mathieu Ramona [19] will be presented

in chapter 4. Chapter 5 will discuss the design of the implemented system and

its results. Finally, chapter 6 will draw conclusions for further improvements.
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Chapter 2

Pattern Recognition

Pattern recognition is a part of machine learning and the term stands for

the assignment of a label to a incoming object, which is represented by fea-

tures which allow to characterize the signal. Well-known applications are

for instance speech recognition, face recognition and finger print recognition

among others. This chapter shows the basic components needed for a pattern

recognition system (see figure 2.1) and describes them with respect to the

problem of singing voice detection:

• The incoming digital signal is preprocessed for instance by noise reduc-

tion or the normalization of the range of values.

• The patterns are represented by features, which quantify characteristics

of an object. As a consequence, the data size is reduced. Features are

specifically adapted to the application in which they are used. They

should have low calculation costs and should be robust against irrele-

vant transformations of the input signal.

• A classifier assigns the objects, represented by features to a class. Nu-

merous pattern recognition applications are of high complexity. There-
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Figure 2.1: Basic elements of a pattern recognition system

fore, the classifier has to learn, which features belong to a certain class.

This can be done with several learning strategies. Here, a supervised

learning strategy is used: the model parameters of the classifier can be

adjusted with the help of training data, where the class membership of

each feature vector is known.

• The decisions of the classifier can be post-processed by analysis of ad-

jacent segments. For example decisions can be filtered in time-domain

by means of median filtering, or sequences of decisions can be analyzed

by a Hidden Markov Model as used in [19].

2.1 Features

This section describes a selection of features used in connection with singing

voice detection in literature and is divided into acoustic and statistical fea-

tures. All discussed features are based on the frequency spectrum of the
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signal. This is calculated via Short-time Fourier transform (STFT) [20].

The window-size of the STFT is chosen such, that the signal in this time

interval can be regarded as quasi-stationary. Typically, values for window

size are around 25 ms with a hopsize around 10 ms [21].

2.1.1 Acoustic features

Mel frequency cepstral coefficients

Mel frequency cepstral coefficients (MFCC) [22] were originally used in the

context of speech communication but are also widespread in music signal

description. Rocamora and Herrera [21] compared numerous audio features

for singing voice detection and the MFCC were the most successful feature.

First, the signal is divided into frames where the fast Fourier transform

(FFT) is applied to. That means, one MFCC vector is calculated for each

frame. Then, the logarithm of the magnitude spectrum is taken. This is

perceptually motivated since loudness perception was found out to be of log-

arithmic nature and the phase information of the spectrum is nonessential

compared to the magnitude [23]. The next step is to group and average the

frequency bins according to the mel frequency scale which is approximately

linear up to 1000 Hz and afterwards logarithmic. Again, this is a percep-

tually motivated measure since also the bandwidth of the auditory filters is

increasing with frequency. The grouping step is realized via triangular fil-

ters and results in typically 40 bands. This signal is reduced to typically 13

MFCC via discrete cosine transform (DCT).
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Log Frequency Power Coefficients (LFPC)

Nwe et al. [24] use the LFPC, where the signal frames are filtered by a 12-

band filterbank with their filter bandwidth increasing logarithmically. The

feature is defined as:

LFPCk′ [n] = 10 log10

∣∣∣∣Sk′ [n]

Nk′

∣∣∣∣ (2.1)

where Sk′ [n] is the energy of frequency band k′ at frame n. Therefore all

squared values of bins k within a frequency band k′ are summed.

Harmonic coefficients (HC)

The HC is a feature used by Chou and Gu [25] and is defined as HC =

maxτ (TA[τ ] + SA[kτ ]) with TA and SA denoting the temporal- and spectral

autocorrelation functions respectively, where τ and kτ are the corresponding

time and frequency bin lags.

TA[τ ] =

∑N−τ−1
n=0 x̄[n]x̄[n+ τ ]√∑N−τ−1

n=0 x̄2[n]
∑N−τ−1

n=0 x̄2[n+ τ ]
(2.2)

SA[τ ] =

∑M/2−kτ−1
k=0 X̄[k]X̄[k + kτ ]√∑M/2−kτ−1

k=0 X̄2[k]
∑M/2−kτ−1

k=0 X̄2[k + kτ ]
(2.3)

Signal frame x̄[n] with length N and magnitude spectrum X̄[k] generated by

an M -point FFT are the zero-mean versions of x[n] and X[k] respectively.

Spectral flux

The spectral flux (SF) [26] is often used in the field of music instrument

classification. The SF embodies the extent of spectral change between two

consecutive frames at time index m and m− 1 with energy normalized mag-
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nitude spectrum X̂. It is computed as follows:

SFm =

M/2−1∑
k=0

(
X̂m[k]− X̂m−1[k]

)2
(2.4)

Spectral roll-off

The spectral roll-off R is a descriptor which indicates where the majority of

energy is located in the spectrum. R is the greatest frequency value which

fulfills the following inequation:

R−1∑
k=0

Xm[k]2 ≤ γ

M/2−1∑
k=0

Xm[k]2 (2.5)

Rocamora and Herrera [21] used γ = 0.85.

Vibrato

The vibrato is a recurrent change of the pitch, a frequency modulation. It can

be described by the two parameters rate and extent. The vibrato rate stands

for the number of oscillations per second, whereas the extent includes the

range of pitch change from the center frequency. For the vibrato description

of signals , Khine et al. as well as Nwe and Li [5,27] use a cascaded two layer

vibrato filterbank like in Fig. 2.2, where every center frequency is located at

musical notes, i.e. filter bandwidth b is not constant, it is proportional to the

center frequency. The first layer consists of 96 overlapping trapezoidal band-

pass filters whose filter function is tapered between ±0,5 and ±1,5 semitones

and is showed in (2.6). A filter bandwidth of 1,5 semitones is sufficient since

the vibrato extent is normally less than one semitone [17]. All the filterbanks

embrace 7 octaves from 65 to 16 kHz because singing has high frequency har-

monics [5]. Each bandpass filter is followed by 5 non-overlapping rectangular

filters with the same frequency extent and position as the first layer’s filter.
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Figure 2.2: Vibrato filter [27]

WTRPZ(f) =


1, 5 + 3f

b
for − b

2
≤ f < − b

6

1 for − b
6
≤ f ≤ b

6

1, 5− 3f
b

for b
6
< f ≤ b

2

(2.6)

After the octave scale filtering the logarithmic energy of each band is

computed and after a DCT a octave frequency cepstral coefficient (OFCC)

vector with 9 elements is obtained for each audio frame of 20 ms with 13 ms

overlap. In order to capture the vibrato rate, the delta parameters of two

consecutive frames are also considered.

2.1.2 Statistical features

Statistical features give a description of the spectrum’s shape by interpreting

it as a probability distribution. The individual frequencies and the normal-

ized spectral amplitude correspond to the random variable and distribution

respectively.

Spectral centroid

The spectral centroid (SC) [28] represents the center of gravity of a distribu-

tion and apparently, it correlates with the perceived brightness of a sound [2].

SC =

∑M/2
k=1 kXm[k]∑M/2−1
k=0 Xm[k]

(2.7)
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Skewness

The skewness is an indicator for the asymmetry of a distribution around the

mean. If the values of the distribution are located more at upper frequencies

than at lower frequencies, the skewness is negative and vice versa. The

definition is:

Skewness =

√
M
2

∑M/2−1
k=0

(
Xm[k]− X̃m

)3
(∑M/2−1

k=0

(
Xm[k]− X̃m

)2)3/2
(2.8)

where X̃m is the mean value of the magnitude spectrum Xm[k] at frame m.

Kurtosis

The kurtosis shows how spired a distribution is. A pointed distribution has

a high kurtosis value while a flatter one has a low value.

Kurtosis =

M
2

∑M/2−1
k=0

(
Xm[k]− X̃m

)4
(∑M/2−1

k=0

(
Xm[k]− X̃m

)2)2 − 3 (2.9)

Spectral Flatness

The spectral flatness (SF) [29] is a descriptor for the similarity of a distribu-

tion with a flat spectrum. It is the geometric mean divided by the arithmetic

mean of the spectrum. A SF value close to 1 means high similarity to the

ideal spectrum of white noise, and a low value stands for a more tonal signal.

Rocamora and Herrera [21] compute SF values for four frequency bands in

the area of 200 Hz and 5000 Hz.

SF =

M
2

√∏M/2−1
k=0 Xm[k]

1
M/2

∑M/2−1
k=0 Xm[k]

(2.10)
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2.2 Classification Techniques

In this section, a selection of wide-spread classification techniques is outlined.

2.2.1 Gaussian mixture model

A Gaussian mixture model (GMM) is the representation of data in feature

space with D- dimensions by a linear combination of M Gaussian probability

density functions (PDF), where each class is modeled by one GMM. It is a

widespread approach used for diverse classification tasks: [30] use it for de-

tection of singing voice segments, [31] for onset detection, [4,32,33] for singer

identification, [34] for pitch estimation, [35] for singing voice separation, [25]

for singing voice separation and [36] for melody transcription. According to

Reynolds and Rose [37], the definition of a GMM is:

p(x|λ) =
M∑
i=1

wigi(x) (2.11)

where x is a D-dimensional feature vector, wi with i = 1, . . . ,M are the

weights of individual D-variate Gaussian PDFs gi(x):

g(x) =
1

(2π)D/2 |Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.12)

with mean vector µ and determinant of D-by-D covariance matrix |Σ|. T

is the matrix transpose operator. Consequently, a GMM k is entirely repre-

sented by it’s parameter set λk = {wi, µi,Σi}.

2.2.2 Maximum likelihood parameter estimation

For each class c, the model is trained by a sequence of N feature vectors

X = {x[1],x[2], . . . ,x[N ]}. The aim is to find parameters which best ex-

plain the set of feature vectors. This process is called maximum likelihood
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parameter estimation. A popular technique is the expectation-maximization

(EM) algorithm [38] which, after starting with a initial model λ tries to

reestimate the model parameters λ iteratively, such that p(X|λ) ≥ p(X|λ).

Reynolds [37] uses the following reestimation formulas:

wi =
1

N

N∑
n=1

p(i|x[n], λ) (2.13)

µi =

∑N
n=1 p(i|x[n], λ)x[n]∑N
n=1 p(i|x[n], λ)

(2.14)

σ2
i =

∑N
n=1 p(i|x[n], λ)x[n]2∑N

n=1 p(i|x[n], λ)
− µ2

i (2.15)

Equation (2.13) computes the mixture weights, (2.14) the means and (2.15)

the variances. σ2
i , x[n] and µi are the elements of vectors σ2

i , x[n] and µi.

The a posteriori probability for component density i is given by

p(i|x[n], λ) =
wigi(x[n])∑M
k=1wkgk(x[n])

(2.16)

Problems of the training process are the choice of model order M and the

initial model parameters, since the EM algorithm converges to the local max-

imum.

Decision function

After modeling each class c with an individual GMM, the class ĉ has to be

found, which produces the highest likelihood for a given observation sequence

X, i.e.

ĉ = arg max
k
p(λk|X) (2.17)

In the case of singing voice detection, only two classes have to be distin-

guished. Therefore, a decision function can cope with the demand of equation

(2.17). Tsai and Wang [39] use the following equation:

f1(x) = log(p(λv|x))− log(p(λnv|x)) (2.18)
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where λv stands for the vocal and λnv for non-vocal model. If f1(x) > 0,

the feature vector x belongs to the vocal class, otherwise it belongs to the

non-vocal class. Lukashevich et al. [30] propose a function which can produce

better decision results because of a more appropriate data spread, enabling

a better class separation:

f2(x) =
p(λv|x)

p(λv|x) + p(λnv|x)
− 0.5 (2.19)

Additional post processing on f2(x) with autoregressive moving average fil-

tering and smoothing with a Hamming window results in an average increase

of correct classification from 72,7% to 81,3%.

2.2.3 Support vector machine

The support vector machine (SVM) is used amongst others in [19, 40, 41]

for the task of singing voice detection. In [21], the SVM was compared

against other classifiers like k-nearest neighbor and neural networks. SVM

in conjunction with MFCC features exhibited the best performance.

Linear separable data

Given is a set of training data X = {x[n], c[n]} consisting of D-dimensional

feature vectors x[n] and classes c[n] ∈ {+1,−1} a decision function can

be found which assigns incoming data to a certain class, i.e. fX : <D 7→

{+1,−1}. It can be proven that, the probability of misclassification is higher

for decision functions with high complexity [42]. The support vector machine

(SVM) is based on the low-complex hyperplane separator:

H = {x| 〈n,x〉+ b = 0} (2.20)

where n,x ∈ <D, b ∈ <. The decision function is fX = sgn (〈n,x〉+ b).

The optimal hyperplane to separate two classes has the maximum possible
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Figure 2.3: Hyperplane with maximal margin, separating two different

classes. The members which adjoin the hyperplane margin are called support

vectors (indicated by bold symbols).

distance between members of each class (see Fig. 2.3). The distance of a

point x[n] belonging to class c[n] from a hyperplane H is

d(H,x[n]) = c[n]

(〈
n

||n||
,x[n]

〉
+

b

||n||

)
(2.21)

The margin of hyperplane H is the distance from points (x[1],+1) and

(x[2],−1) to H. Combining equation (2.21) for these points yields〈
n

||n||
, (x[1]− x[2])

〉
=

2

||n||
(2.22)

Optimization and Lagrangian function

Equation (2.22) is the key to position a maximum margin hyperplane H

between points of two classes. The margin can be maximized, when ||n||

is minimized, because distance d is inversely proportional to ||n||. This is
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synonymous with min 〈n,n〉 and to make sure that hyperplane H correctly

separates the data it must be guaranteed that c[n](〈n,x[n]〉 + b) ≥ 1. This

optimization problem can be solved by the help of the Lagrangian function:

L(n, b, α) =
1

2
〈n,n〉 −

∑
n

α[n] [c[n](〈n,x[n]〉+ b)− 1] (2.23)

where α is the Lagrange multiplier and has to fulfill α[n] ≥ 0. The optimal

conditions are set to

∂L

∂n
= 0 ⇒ n =

∑
n

c[n]α[n]x[n] (2.24)

∂L

∂b
= 0 ⇒

∑
n

c[n]α[n] = 0 (2.25)

One can get the dual Lagrangian function W by inserting the solutions of

Eq. (2.24) in Eq. (2.23).

W (α) =
∑
n

α[n]− 1

2

∑
n,m

α[n]α[m]c[n]c[m] 〈x[n],x[m]〉 (2.26)

The dual problem can be solved finding the maximum of W subject to the

constraints α[n] ≥ 0 and
∑

n α[n]c[n] = 0. The solution are values for the

Lagrangian multiplier α[n] which are predominantly zero. The only nonzero

values represent points which lie very close to the hyperplane H. These

points are called support vectors. That means the positioning of the maximal

margin hyperplane only depends on the support vectors. The normal vector

can now be computed with n =
∑

n c[n]α[n]x[n].

Decision function

The final decision function which assigns new unclassified feature vectors x[n]

to a class c[n] can be written as:

fX = sgn(〈n,x[n]〉+ b) = sgn(
∑
n

α[n]c[n] 〈x[n],x[n]〉+ b) (2.27)
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Mapping with kernel functions

The basic idea is to map data which is not easily separable by a hyperplane

into a space representation, where the problem is easy to solve. A nonlinear

map Φ transforms data into a higher dimensional dot product space (it is

also called feature space, which is misleading here): Φ : <D 7→ F . Eq. (2.28)

shows an example for a nonlinear map augmenting the dimension:

Φ

x1
x2

 =


x21

x22
√

2x1x2

 (2.28)

In F the data can be easily separated using the low complex hyperplane

maximal margin classifier as described earlier. It can be seen in Eq. (2.26)

and (2.27) that it’s crucial property is that xi only occurs in dot products.

Computing dot products in high dimensional feature space F can be very

expensive. Therefore suitable kernel functions K with inherent dot product

properties are utilized. K is a function which exists in <D but behaves

like a dot product in higher dimensional space F . Mapping the data with

function Φ and computing the dot product in F is all represented by the

kernel functions. Eq. (2.29) elucidates this duality.

〈Φ(x),Φ(z)〉 =

〈
x21

x22
√

2x1x2

 ,


z21

z22
√

2z1z2


〉

(2.29a)

= x21z
2
1 + x22z

2
2 + 2x1z1x2z2 = (x1z1 + x2z2)

2 (2.29b)

= 〈x, z〉2 =: K(x, z) (2.29c)

If a function is a kernel function can be ascertained by Mercer’s theorem. The

function K has to be symmetric: K(x1, x2) = K(x2, x1), and kernel matrix
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Kij = K(xi, xj) has to be positive definite. Examples for kernels are:

K(x1, x2) = 〈x1, x2〉 (Linear) (2.30a)

K(x1, x2) = (γ 〈x1, x2〉+ β)d (Polynomial) (2.30b)

K(x1, x2) = exp{−γ||x1 − x2||2} (Gaussian) (2.30c)

2.2.4 Multilayer perceptron

The multilayer perceptron (MLP) is a subclass of artificial neural networks

(ANN), which are inspired by the central nervous system in the brain. The

classifier is applied amongst others in [43] for singing voice detection.

Besides the input (stimulus) and the output (response) of the network it

consists of one or more hidden layers of neurons. The connections of neurons

in the network are implemented by synapses. The neuron output only fires

when the sum of weighted input signals exceed a certain threshold. This

behavior is modeled by integrator and a nonlinear differentiable activation

function, mainly a logistic function:

ϕi(vj[n]) =
1

1 + e−vj
(2.31)

where vj is the weighted sum of all inputs of a neuron and the bias. The clas-

sification of an object represented by its features can be done by training the

MLP. That means all the inner weights W of the network have to be adjusted

with the help of hand-labeled references, indicating the class membership of

every feature vector.

The induced local field is:

vj[n] =
m∑
i=0

wji[n]yi[n] (2.32)

where wj0[n] is the bias bj[n] applied to neuron j. The output yj[n] of neuron
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Figure 2.4: Layout of Multi layer perceptron. Adapted from [44]

j is:

yj[n] = ϕj(vj[n]) (2.33)

The delta rule

The error ej[n] of neuron j at iteration n is the difference of the desired

output, i.e. the class cj[n] and the neuron’s actual output yj[n]:

ej[n] = cj[n]− yj[n] (2.34)

The instantaneous error energy for neuron j is defined as 1
2
e2j [n]. Conse-

quently, the total error energy E over all neurons in the output layer can be

written as

E[n] =
1

2

∑
j∈C

e2j [n] (2.35)

C is the set of neurons in the output layer. The average squared error energy

is then

Eav[n] =
1

N

N∑
n=1

E[n] (2.36)
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with the n-th training pattern and training pattern set size N . Eav acts as a

representation for the learning performance and can be affected by the change

of the weighting parameters. Eav is called cost function and in the following

back-propagation algorithm it is the key element for gradient descent, i.e.

trying to minimize the cost function in weight space by using the steepest

path. For this, a correction ∆wji[n] has to be applied to the weighting

parameters which can be written according to Haykin [44] as:

∆wji[n] = −η ∂E[n]

∂wji[n]
= ηδj[n]yi[n] (2.37)

where η is the learning-rate parameter, the step size of the descent. Eq.

(2.37) is called delta rule where δj[n] is the local gradient of neuron j:

δi[n] = ej[n]ϕ′j(vj[n]) (2.38)

The dash on the right side of ϕ denotes a differentiation with respect to the

argument.

Back-propagation formula

The back-propagation algorithm contains two main parts, the forward and

the backward pass. In the forward pass the response of the output layer to

a certain input pattern is calculated. In the backward pass, error signals are

propagated backwards through the network starting from the output layer.

Local gradients δj[n] for each neuron j are recursively computed and therefore

corrections ∆wji[n] can applied to the weights. This is the reason why a

relation between adjacent layers is needed. There are two cases. For the first

case, neuron j is a output node. δj[n] can be computed with Eq. (2.38).

For the second case, the neuron is in one of the hidden layers. The back-

propagation formula which determines the propagation of local gradients
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from one layer to another towards the input of the MLP is:

δj[n] = ϕ′j(vj[n])
∑
k

δk[n]wkj[n] (2.39)

where k stands for neurons in a layer which is behind the layer of neurons j

regarding the forward pass orientation.

The back-propagation algorithm

The back-propagation algorithm has to modes: in the batch mode, coefficient

updates are executed after all training vector of an epoch are presented. The

second mode is the online mode where the coefficients are adjusted after each

training vector. One epoch of a training vectors is defined as {x[n], c[n]}Nn=1

where x[n] are the features from a signal, c[n] are the corresponding classes

like singing and non-singing voice and N is the size of the epoch. The fol-

lowing back-propagation algorithm according to Haykin [44] works in online

mode:

1. Initialization. Initialize weights and thresholds with values from a uni-

form distribution with zero mean.

2. Presentation of training examples. Present the next feature vector x[n]

at time instance n which is a part of feature set X to the input of the

network.

3. Forward computation. Compute the response to training vector by

preceding layer by layer towards the output, i.e. compute the local in-

duced fields v
(l)
j for the neurons j of each layer l and their corresponding

outputs yli. Determine the error signals ej[n].
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4. Backward computation. Compute the local gradients δ
(l)
j :

δ
(l)
j [n] =

e
(L)
j [n]ϕ′j(v

(L)
j [n]) for output layer L,

ϕ′j(v
(l)
j [n])

∑
k δ

(l+1)
k [n]w

(l+1)
kj [n] for hidden layer l.

(2.40)

In Eq. (2.40) it can be seen that the error e
(L)
j [n] of a neuron j is only

computed for the output layer with Eq. (2.34). For all other layers,

the error propagates backwards via the local gradients. Update the

weights w
(l)
ij according to:

w
(l)
ji [n+ 1] = w

(l)
ji [n] + α(w

(l)
ji [n− 1]) + ηδ

(l)
j [n]y

(l−1)
i [n] (2.41)

Eq. (2.41) is a generalized delta rule version of Eq. (2.37). The sec-

ond term with momentum constant α, which controls the influence of

preceding weights is added.

5. Iteration. Go back to step 2 until the stopping criterion is met.

2.3 Feature Selection

A selection of features is fundamental in order to reduce the classification-

error. As a consequence of a smaller set of features after the selection process,

memory requirements and computational costs decrease and a smaller train-

ing data set is required [45].

Regarding the evaluation of feature subsets, the literature discriminates

basically between two approaches:

• Filter method: The evaluation of the discriminational power of a single

or a set of features happens independently of the classifier. An evalu-

ation criterion is applied to feature data and occasionally also to class

data.
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• Wrapper method: The classifier is used for the evaluation feature sub-

sets. A widespread method for the evaluation of the predictive power of

a feature set is to perform cross-validation [46] with an error measure.

In sections 2.3.1 and 2.3.2, two evaluation criteria for filter-based feature

selection of single features or subsets with multiple features are discussed.

The Fisher criterion and LDA were used for experiments within the scope of

this thesis.

An important problem of feature selection is how to search relevant com-

binations of features for forming a feature subset, because the evaluation of

all possible feature combinations can be very costly and time-consuming for

a large number of features. Two established search strategies are for instance

forward selection and backward elimination. The Forward selection strategy

begins with one feature and successively adds the feature, which generates

the highest gain compared to the feature subset before. The backward elim-

ination strategy starts with all available features and successively removes

the feature which produces the highest accuracy gain. Both algorithms stop

the search, when the modification of the featureset does not induce an im-

provement of accuracy anymore [45].

2.3.1 Fisher’s Linear Discriminant Analysis

The aim of Fisher’s linear discriminant analysis (LDA) for a two class scenario

is to find a hyperplane H, which separates the feature data x belonging to

each of these classes according to the Fisher criterion [47]. The hyperplane

with normal vector n is given as:

H = {x| 〈n,x〉+ b = 0} (2.42)

The basic idea of Fisher’s criterion [48] is, that feature data is assumed
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to be well-separable, if the distance between the mean vectors of each class

is large, while the scattering of each class is small. The Fisher criterion for

multidimensional feature space is defined as:

J(n) =
nTSBn

nTSWn
(2.43)

SB represents the between-class scatter matrix. This matrix contains val-

ues, which stand for the distance between the mean vectors for all feature

combinations.

SB = (m2 −m1)(m2 −m1)
T (2.44)

SW stands for the within-class scatter matrix and contains the sum of vari-

ances of each class for all feature combinations.

SW =
∑
n∈c1

(xn −m1)(xn −m1)
T +

∑
n∈c2

(xn −m2)(xn −m2)
T (2.45)

The mean vector of each class c (for a two-class problem k is 1 or 2) over all

time instances n is given as:

mk =
1

Nk

∑
n∈ck

xn (2.46)

and the projection onto hyperplane H results in:

mk = nTmk (2.47)

Equation 2.43 is differentiated with respect to n in order to determine the

maximum possible value of J(n) for a evaluated set of features. The maxi-

mum can be reached by variation of the direction of the hyperplane’s normal

vector n, when the following equation is valid:

(nTSBn)SWn = (nTSWn)SBn (2.48)
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The scalars nTSBn and nTSWn can be disregarded, because only the direc-

tion of the normal vector n is relevant and not it’s length. Multiplication

with S−1W yields:

n = S−1W SBn (2.49)

Equation 2.44 shows that SBn points to the direction of m2 − m1. The

normal vector n of hyperplane H for a two-class problem is therefore given

as:

n = S−1W (m2 −m1) (2.50)

When Eq. (2.50) is applied to Eq. (2.43), the maximal value of the Fisher

criterion for a selected feature or feature subset can be calculated.

2.3.2 Correlation-based Feature Selection

The Pearson coefficient [49] can be used as criterion for correlation-based

feature selection (CFS) [50] and is defined as:

%(X,C) =
cov{X,C}√

var{X}var{C}
(2.51)

where cov and var denote the covariance and variance respectively. X and

C are random variables representing feature and class.

An estimation for Eq. (2.51) is:

%̂(X,C) =

∑
m(xi[m]− x̄i)(c[m]− c̄)√∑

m(xi[m]− x̄i)2
∑

m(c[m]− c̄)2
(2.52)

where m is the frame-index of the STFT. The bar notation stands for the

mean value over time index m.

This correlation measure can only evaluate a single feature for feature

ranking of single features. In [50], a correlation-based criterion was designed,

which evaluates correlation between the selected feature subset containing
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κ features and the class, denoted by %̄(Xκ, C). %̄(Xκ, Xκ) stands for the

averaged correlation coefficient between the feature subsets. The criterion

used for CFS as defined by Hall [50] is:

J(Xκ, C) =
κ %̄(Xκ, C)√

κ+ κ(κ− 1) %̄(Xκ, Xκ)
(2.53)

2.4 Evaluation of Classification-Performance

The following sections comprise approaches which where applied in the scope

of this thesis in order to evaluate the performance of the pattern recognition

system.

2.4.1 K-fold Cross-Validation

K-fold cross-validation [46] is an acknowledged approach for the evaluation

of the classifier’s model to predict the class-membership of unknown frames.

For this purpose, the dataset is divided into k subsets of equal size. In every

run, another subset is used for testing, while the remaining k − 1 subsets

are used for the training of the classifier’s model. Finally, the mean of k test

results can be calculated. The evaluation of the k test subsets is accomplished

by an error measure like for instance frame accuracy. This measure is the

ratio of correct classified frames to the number of all frames.

2.4.2 Confusion Matrix

The confusion matrix (see table 2.1) delivers insight into the errors related

to each class. The row index of the matrix stands for the actual classes

P (Positive class, i.e. singing voice is present) and N (Negative class, i.e.

singing voice is not present). The column index represents the predicted
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Predicted classes

P̂ N̂

Actual classes
P True Positive (TP) False Negative (FN)

N False Positive (FP) True Negative (TN)

Table 2.1: Confusion matrix

classes P̂ and N̂ . Consequently, it can be evaluated whether a classifier

tends to deliver results, which are biased towards one class.
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Chapter 3

The Implemented System

This chapter describes the implemented pattern recognition system for singing

voice detection. The implementation was completely programmed in MAT-

LAB except the classifier. A support vector machine classifier called LIBSVM

by Chang and Lin [51] was used. An system overview can bee seen in figure

3.1. Basically, the system comprises three stages:

• Validation stage: the aim of this stage is to find a predictive model

by selecting adequate features (see chapter 3.4) and finding optimal

SVM-parameters (see chapter 3.3).

• Training stage: the calculated parameters and features from the val-

idation stage are used to train the classifier with files from the training

data base. In both, the validation and the training stage, hand-labeled

class data for the training of the model is used. This used learning

strategy is called supervised learning (see chapter 2). In both stages,

not all available frames are used for building the predictive model. The

frames are randomly selected from the database. Ramona states in [19],

that an increase of training data frames does not have an noticeable
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impact on the classification result. This statement was verified by own

empirical experiments. For computational reasons, like in [19], 20000

frames were randomly extracted from the database for training.

• Test stage: The predictive model, calculated in the training stage is

used for the prediction of singing voice segments of unknown test items.

In all stages, the range of the feature values is linearly scaled to the interval

[−1,+1] [52].
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Database Items Length

Validation 15 ≈ 1 h

Training 52 ≈ 3.3h

Test 14 ≈ 1 h

Table 3.1: Databases

3.1 Database

The audio files used in the scope of this thesis were assembled by Math-

ieu Ramona [19]. He provided links to 93 files from www.jamendo.com as

well as manual annotations, which give information about the presence of

singing voice in every file (these annotations act as a reference). He divided

the files into three non-overlapping subsets for validation (16 files), training

(61 files) and testing (16 files). All kinds of parameter adjustments are solely

performed on the validation and training database in order to avoid possi-

ble over-fitting to the test data. Unfortunately some links were broken, so

the databases used for this thesis comprise less items (see table 3.1). The

database contains more than 5 hours of music.

3.2 Feature Extraction

3.2.1 MFCC-based Features

The extracted feature set consists of 79 features (see table 3.2), from which

78 features are based on MFCC-features. In [21], a feature set based on

MFCCs achieved the best result of all tested feature-sets with an accuracy

of 84.5 %.

In the scope of this thesis, 13 MFCCs and their delta features denoted
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Feature Coefficients

MFCC 13

MFCCmed 13

MFCCstd 13

dMFCC 13

dMFCCmed 13

dMFCCstd 13

EBR 1

Table 3.2: All extracted features

by dMFCC were extracted. Delta features are computed as the difference

between the feature values of two consecutive frames and thus represent the

first derivative.

Additionally, long-term features calculating the median and standard de-

viation over a time window are utilized. In [21] different window lengths and

hopsizes were tested. A window length of 1 second achieved the best perfor-

mance and is consequently used for extraction here. These long-term features

applied to MFCCs and dMFCCs are denoted by MFCCmed, dMFCCmed and

MFCCstd, dMFCCstd respectively.

The features were extracted with a sampling rate of 11025 Hz. The STFT

was computed using a Hamming window of approximate 23 ms length. Every

10 ms, a new spectrum is available.

3.2.2 Energy Band Ratio

The Energy Band Ratio (EBR) is the energy of the frequency band between

200 and 2000 Hz related to the first MFCC coefficient. The first coefficient

represents the DC-component of the envelope of a STFT-spectrum and is
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Figure 3.2: Evaluation of SVM-parameters C and gamma by mean accuracy

of 10-fold cross-validation in percent.

related to the RMS-value of the spectrum. The selected frequency band is

an area where the main part of the energy singing voice is located. For

unvoiced speech signals on the other hand the main energy extends up to

4000 Hz [21].

3.3 Grid Search

The SVM classifier can be used with different parameters and kernels. The

optimal settings depend on the application. Here, a RBF kernel was used

and the optimal values for SVM-parameters C and γ were determined with

the help of the 10-fold cross-validation method (see chapter 2.4) and the

validation database. After searching a coarse parameter grid including values

of C = 2−5, 2−3, . . . , 215 and γ = 2−15, 2−13, . . . , 23, a finer grid search was

completed, containing promising parameter areas. The result of the fine grid

search can be seen in figure 3.2. The best results were obtained by C = 1 and
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γ = 0.3. It can be seen, depending on different parameter values, changes in

mean accuracy ranging from about 40 % to over 70 % are possible.

3.4 Feature Selection

This chapter describes the process of feature subset selection from the 79 ex-

tracted features. First, a feature ranking was executed, to make a statement

about the importance of single features, evaluated by the Fisher criterion.

Subsequent steps include forward selection and backward elimination feature

subset selection with Fisher criterion as evaluation measure. After the se-

lection of potential feature subset candidates, the subsets were evaluated,

comprising the SVM classifier accompanied by 10-fold cross-validation as

evaluation measure.

3.4.1 Feature Ranking

The 79 extracted features were ranked by applying the Fisher criterion as

described in chapter 2.3.1 on every single feature. Table 3.3 shows the results

of the best ten features. For the calculation of the relative score, the Fisher

criterion values of all features were normalized such, that the best feature

exhibits a value of 1. The number in front of the feature name denotes the

coefficient number.

According to the Fisher criterion ranking, EBR is the best feature. It

is remarkable, that eight out of the ten best features include long-term fea-

tures. The remaining two features correspond to the RMS-value of a STFT-

spectrum.
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Rank Feature name Rel. Score

1 EBR 1.00

2 4. MFCCstd 0.98

3 1. MFCCmed 0.73

4 1. MFCC 0.62

5 8. MFCCstd 0.46

6 7. MFCCstd 0.30

7 6. MFCCstd 0.28

8 9. MFCCstd 0.26

9 5. MFCCstd 0.24

10 3. MFCCstd 0.21

Table 3.3: Variable ranking results

3.4.2 Feature Subset Selection

Filter Method

The first step of the feature subset selection utilizes a filtering method, in

order to identify potential feature subsets by the use of the Fisher crite-

rion as performance criterion. Forward selection and backward elimination

algorithms (see chapter 2.3) for the generation of the subsets were chosen.

Figure 3.3 shows the Fisher criterion results of both subset selection algo-

rithms. It can be seen, that the Fisher values of both subset algorithms differ

very slightly. For a feature subset size of above 40 features, no remarkable

improvement of the Fisher criterion can be observed, whereas there is a steep

ascent for small subset sizes up to 10 features.

The lower subfigure shows the number of different features which were

chosen by forward and backward selection algorithms. It is noticeable, that

the subsets of both algorithms differ in 60 % of the cases by only a single
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Figure 3.3: Upper subfigure: feature subset selection by forward selection

(red graph) and backward elimination (blue graph). Lower subfigure: Num-

ber of features in which the subsets of forward selection and backward elim-

ination differ.

feature or include exact the same features.

Wrapping

The feature subsets which were determined by the previous filtering method

are evaluated with the help of the SVM classifier. This is achieved by the

usage of a 10-fold cross-validation and the mean and standard deviation of

accuracy over all cross-validation runs. The features subsets, both of forward

selection and backward elimination, were tested up to a subset size of 40

features. It became apparent, that the evaluation of higher feature set sizes

will not evoke improvement in accuracy.
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validation runs. The blue and red graphs indicate the results of backward

elimination and forward selection generated subsets respectively.

The results are depicted in figure 3.4. A steep ascent of mean accuracy

can be observed for small subset sizes up to 6 features. Above a subset size

of 6 features up to about 30 features, the mean accuracy remains in the

area of 75 %. For these subset sizes, the standard deviation changes more

explicitly and has its minimum at a subset size of 22. Therefore, this subset

size generated by forward selection was chosen for the final test stage.

Figure 3.5 shows the confusion matrix values (see chapter 2.4) of forward

selection generated subsets. Due to slight differences and clarity of depiction,

only the results of forward selected subsets are shown. It is noticeable, that

above a subset size of 30 features, mainly false positive values increase at the

expense of a decrease of true negative values.
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3.5 Post-Processing

As post-processing, simple median filtering is utilized within the system. Ra-

mona [19] achieved a mean improvement of 8.9 % accuracy over all database

items by means of median filtering with a filter size of approximately 0.5

seconds. Figure 3.6 displays the mean and standard deviation of the im-

provement of accuracy over all items of the validation database evoked by

median filtering. The best mean improvement is about 1.7 % with a filter

size of approximately 1.9 seconds. The increase of standard deviation with

median filter size shows, that not all items benefit from this post-processing

alike.
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validation database items caused by median filtering.

36



Chapter 4

Results

A SVM-model was trained, using the determined optimal kernel-parameters

C = 1 and γ = 0.3 (see chapter 3.3) and the selected feature subset (see

chapter 3.4).

The resulting system is applied to the same test database as used by Ra-

mona [19] in order to compare the results. Unfortunately, because of broken

links to audio files, especially the training database differs with respect to

the number of items. Ramona used 61 items for training, whereas only 52

items were available for training here. Thus, the results are in fact not fully

comparable. Also links to files of the test and validation databases used in

the scope of this were broken, such that two and one items were missing

respectively.

The results are presented in table 4.1. Besides the overall accuracy of each

item, the table shows the accuracy with respect to each class. Furthermore,

the impact of post-processing on the accuracy results is shown. The accuracy

of both classes over all items is 68.1 % without, and 69.7 % with additional

post-processing by median-filtering. The accuracy only for the detection of

singing voice frames is 76.7 %, which is better than the accuracy of non
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singing voice frames with 63.7 % with post-processing. It is apparent, that

the modeling of singing voice content works considerably better. By listening

to the items, where non singing voice was poorly classified, it appeared that

instruments had an apparent resemblance to voice-like sounds.

The performance of the implemented system is considerably inferior to

the results of Ramona’s singing voice detection system. Ramona’s system

obtains an accuracy for both classes over all items of 82.2 % with post-

processing. His system performs almost equally well on both classes, but

some items of the non singing voice class also reveal weak results.

Ramona states, that the results of the test set improved by about 9 %

in accuracy by using simple median filtering with about 0.5 seconds filter

length. Here, the post-processing improvement of the implemented system

was not better than 1.6 %.
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Class Singing Voice No Singing Voice Overall

Accuracy [%] Accuracy [%] Accuracy [%]

Post-processing – Median – Median – Median

16 ans.wav 76.1 80.3 84.4 93.5 82.3 90.1

2003-Circons[...].wav 54.5 52.6 86.9 90.5 73.0 74.3

A Poings Fermes.wav 99.6 100 52.1 49.0 68.3 66.4

Believe.wav 74.6 80.6 85.4 87.0 78.4 82.9

Crepuscule.wav 96.2 98.0 33.7 30.3 65.6 64.9

Dance.wav 81.1 87.9 61.7 64.4 75.2 80.7

Elles disent.wav 71.0 72.5 72.9 80.2 71.6 75.1

Healing Luna.wav 93.8 96.3 43.2 39.0 64.4 63.0

Inside.wav 82.1 86.5 79.7 84.0 80.3 84.5

Say me Good Bye.wav 63.5 65.9 32.8 34.9 49.6 51.8

School.wav 43.5 39.1 96.4 97.4 67.0 65.0

Si Dieu.wav 86.6 95.4 09.1 05.4 43.6 45.4

Une charogne.wav 82.3 86.4 44.9 42.1 73.4 75.8

You are.wav 39.7 31.9 94.5 94.8 61.1 56.5

All items 74.6 76.7 62.7 63.7 68.1 69.7

Table 4.1: Accuracy results of test database.
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Chapter 5

Conclusion

A pattern recognition framework for singing voice detection has been imple-

mented and programmed in MATLAB. A database, assembled by Mathieu

Ramona [19] was used for validation, training and testing.

A feature set consisting of 79 features, mainly based on MFCCs, including

long-term and delta MFCC features have been extracted. Furthermore, an

energy-based feature was proposed in the scope of this thesis.

Single features have been ranked with the help of the Fisher criterion.

The proposed energy feature emerged as the best feature. It was noticeable,

that 8 out of the best 10 features were long-term MFCCs.

Feature subset selection has been accomplished by means of LDA and

Fisher criterion in combination with sequential forward selection and back-

ward elimination. Subsequently, the potential LDA-generated feature subsets

have been evaluated in conjunction with the SVM classifier and 10-fold cross-

validation on the training database. A feature set consisting of 22 features

obtained a mean accuracy of 75.6 % with a standard deviation of 2.5 % over

all cross-validation runs.

Finally, the system has been applied to the test database of Ramona. The
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proposed system obtained an overall accuracy of 69.7 %, whereas Ramona’s

system obtained 82,2 %. However, it has to be taken into account that the

training database used here consisted of only 52 instead of 61 items, because

some items were unfortunately not available anymore. The test database

used here also had only 14 items instead of 16.
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Chapter 6

Outlook

The test results of the implemented system show, that especially the accuracy

of the non singing voice class can be improved. More features, particularly

with the capability to model music content could be incorporated in the

feature set.

Also the influence of features which quantify panning or coherence in-

formation between stereo channels could be studied. In contrast to mu-

sic, singing voice is generally panned to the middle of the stereo panorama,

whereas music exhibits a wider stereo panorama. It could be investigated,

if this attributes enhance the ability of the system to discriminate between

music and singing voice.

Furthermore, the impact of the missing training database items on the

accuracy of the test database could be investigated.

The system at the current status utilizes only simple median filtering.

More sophisticated post-processing demonstrably improves the overall per-

formance of the system.
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