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Kurzfassung 

 

 

Das Thema der Diplomarbeit bezieht sich auf die Klangfarbenanalyse. Im Speziellen wird 

auf eine ganz bestimmte Klangkategorie eingegangen, nämlich auf kurze, polyphone 

Audiosamples bzw. aus einem größerem Kontext genommene Signalbursts, die zwischen 

zwei aufeinander folgenden Onsets zu finden sind und meistens in der Größenordnung 

eines einzigen Taktschlages vorliegen.  

Die Arbeit beschäftigt sich auch mit Fragen der generellen Definition von 

Klangfarbe und vertritt die These, dass die allgemeine Auffassung von Klangfarbe nicht 

durch eine statische Spektralkomposition sondern erst durch eine zeitliche Änderung dieser 

d.h. mittels einer zeitlichen Abfolge von Veränderungen in der Spektralkomposition 

konstituiert wird.  

Zuerst wird ein Überblick verschiedener, bestehender Analysemethoden gegeben. 

Diese unterscheiden sich durch das zu modellierende Klangmaterial, welches von 

einfachen, einstimmigen harmonischen Klängen, über mehrstimmige Klangfarben-

Mixturen bis hin zu geräuschartigen Klangtexturen reicht. Jede dieser Klangkategorien 

verlangt also nach einer speziellen Methode um die wahrnehmungsrelevanten Features der 

zu beschreibenden Klänge, in möglichst kompakter Form zusammenfassen zu können.  

Weiters wird untersucht, inwiefern bekannte Modellierungsansätze aus der 

Teiltonverlaufanalyse auf die zeitliche Organisation der durch Analysemethoden 

polyphoner Klangfarbenmixturen generierten Features angewendet werden können. 

Konkret wird versucht die einzelnen zeitlichen Trajektorien der Mel Frequency Cepstral 

Coefficients (MFCC) innerhalb eines isolierten, mehrstimmigen Signalbursts zu 

beschreiben, mit der Absicht der Klangfarbenklassifikation bzw. der späteren 

Identifikation.  
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Abstract 
 

 

This work is about timbre analysis and is aimed at the identification of timbral structures in 

music progression, which are characteristic for a particular class of sounds, namely, short 

polyphonic signal bursts. It gives an overview of timbre definitions and different timbre 

analysis approaches developed over the last 40 years. The general structural diversity of a 

musical audio signal is spanning a range from simple, monophonic harmonic sounds, over 

polyphonic timbre mixtures, to noise-like textures, all of which demand a particular 

analysis method in order to sufficiently describe its perceptually relevant features. The 

purpose of those features on one hand is automatic discrimination from different sounds 

found in the same category, that is, classification, as well as sound similarity matching in 

different fields of music information retrieval (e.g. search for similar sounding music, 

acoustic fingerprinting, concatenative sound synthesis, score following, etc.). The focus of 

this work however is on the temporal character of timbre. It points out the importance of a 

particular sequence of timbral features as being a crucial information carrier for the purpose 

of sound classification and identification. The temporal sequence of change, taking place in 

the timbral structure – or later, in its extracted features – is an important recognition cue 

when identifying sounds. The location, strength and the inter-relation of individual 

harmonic partials, especially their evolution in the attack and the release segments, plays an 

important role for the discrimination of different sounds or sound sources. Comparing the 

degree of fine-structure exhibited by monophonic-signal analysis approaches (e.g. 

sinusoidal plus residual models) and the tools for polyphonic timbre analysis (e.g. Mel 

Frequency Cepstral Coefficient (MFCC) representations), it is evident that the later are 

generally aimed at identifying larger song segments like choruses, verses, etc. i.e. a general 

timbral character, rather than a fine-structure within a shorter homogenous segment e.g. one 

beat or note. This work on the other hand investigates the possibilities of applying formal 

techniques like partial envelope modeling from the field of monophonic timbre analysis for 

re-organizing the content gained by methods of polyphonic timbre analysis like MFCC 

representations, etc.   
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Thesis Outline  
 

 

The thesis is divided into three major parts, whereof the first is exploring methods of 

monophonic timbre analysis techniques. Starting with a short overview of different analysis 

approaches, the focus continues to move towards a sinusoidal model for monophonic 

harmonic sounds and its precise derivation. This model is applied to isolated harmonic 

partials exclusively and is further simplified following the work of Serra [Serra et al. 1997] 

and Jensen [Jensen 1999] by introducing the High level Attributes (HLA), Minimum 

Description Attributes (MDA) and Instrumental Definition Attributes (IDA). In the HLA 

section, different harmonic-spectral descriptors are derived and further extended by the 

introduction of pure spectral descriptors applied to the complete spectrum, where the 

harmonicity of the signal is not given and where it is not possible to isolate individual 

partials.  

The second major part is exploring methods for polyphonic timbre analysis.  It starts 

with the introduction and deduction of MFCC features. Further, different concepts of their 

organization, ranging from static e.g. Gaussian Mixture Models (GMM) to dynamic, like 

first and second order derivatives, self similarity representations and Hidden Markov 

Models (HMM), are introduced. Next, some of the polyphonic timbre analysis methods 

specified by the MPEG-7 standard are examined, namely, the AudioSpectrumBasis and 

AudioSpectrumProjection concepts. The section concludes with the comparison of those 

with the previously introduced MFCC features. 

In the third section, a new method for the analysis of short samples, i.e. isolated 

beats or notes with polyphonic timbral character, is presented. An alternative organization 

of MFCC features is proposed, that is based on the formal methods presented in the first 

section, in particular, the attack and release times and their MDA approximations, which 

were there applied to isolated harmonic partials.   
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1. Introduction 
 

 

 

This work points out the different interpretations and purposes of identifying timbral 

structures, found in a variety of audio signal categories and contexts. More precisely, the 

focus is on exhibiting different approaches to analyzing the timbre of an unprocessed audio 

signal, which are conditioned by its harmonic complexity as well as by the length of the 

sound sequence that is to be described. Furthermore, this work aims to emphasize the 

importance of the temporal character of timbre as it appears to be a crucial information 

carrier for the classification and recognition of sound. A particular goal however, is to 

introduce a concept of temporal organization of MFCC features in polyphonic timbre 

mixtures, namely to propose a model, describing the evolution of each coefficient during 

short sound bursts e.g. beats or single notes (chords), isolated from a larger context e.g. 

song or phrase.  

A first subdivision of timbre analysis concepts may be performed with respect to the 

degree of complexity they are trying to deal with in the sound’s vertical dimension or its 

spectral domain. On one hand, a lot of work has been focusing on monophonic sound 

samples, where the sound may be abstracted and modeled by the structure and the temporal 

progression / development of its individual harmonic partials. This kind of research is 

aimed at playing stile recognition, and further, at instrument identification [Herrera-Boyer 

et al. 2003], i.e. identifying if a note is being played on a saxophone or on a violin. Other 

work is focusing on analyzing real world timbre mixtures or polyphonic timbres, such as 

the ones found in music performed by music ensembles, where several instruments play at 

the same time [Aucouturier 2006].  

Time is another important timbral dimension, and for the next - parallel to the prior 

- subdivision of work in this field, different analysis approaches, which are conditioned by 

the extent of the observed sound in time, shall be considered.  

The temporal evolution and the relational dynamics of individual frequency 

components seem to be as important as a general, “global” constellation of those for a 

classification of particular sounds. The author’s speculative assumption is that it would 



7 

only make sense to talk about “timbre” when the temporal extent of an analyzed sound 

exceeds a minimum duration (a condition of perceptual relevance) so that a structural 

alteration of its spectral components becomes audible. Thus, if only a snapshot i.e. an 

instant or perhaps even a longer, but completely rigid sound or signal is to be analyzed, it 

might be more appropriate to describe it as a mixture of individual frequency components 

with individually weighted amplitudes, rather than “timbre”. 

The timbre analysis methods are also varying with respect to the length of the time 

frame to be analyzed. From this point of view, a research field emerges that is focused on 

the analyses of short sound samples on one hand. Generally these are individual notes 

played by a monophonic instrument, again, with the goal of instrument identification and 

further of expression or playing style classification (legato, staccato, etc.). On the other 

hand - as the length of the observed audio segment increases - the focus and purpose of 

classification is shifting towards compositional analysis, that is, identification of chord 

sequences and further, larger song segments like: choruses, verses, etc. Yet another step 

further, the term “Global timbre” - also referred to as audio fingerprint - comes up, which is 

an attribute aimed at describing a timbral quality that applies to the whole sequence of 

music or perhaps to a whole song, as opposed to a particular temporal segment or 

instrument. One of the main purposes of this analysis approach is genre classification 

[Haitsma et al. 2002] and it will not be a subject of research in this thesis. 

The research contributions from the field of audio analysis and music information 

retrieval are usually a mix of the above described classes, however, we can recognize a 

general tendency of analyzing short segments like single notes in the context of 

monophonic music, whereas longer analysis frames, spanning complete songs or musical 

sequences on the other hand, are rather being considered when describing polyphonic 

timbre mixtures, where several instruments are playing together. Timbre descriptions using 

MFCC’s for example, are usually deployed to roughly describe homogenous sounding 

sequences, indicating changes in instrumentation, or general perceptual differences 

amongst song segments e.g. intro, chorus, verse, etc.  

Following a description of existing timbre analysis approaches applied to sound in 

different contexts, a new method for the classification of short signal bursts like single 

beats and notes with a polyphonic timbral character – which are usually not encountered 



8 

self standing but have to be isolated from a larger context of polyphonic music – is 

proposed. This is achieved by interbreeding the structural concept of attack/release 

envelope times of isolated harmonic partials with the content generated by the MFCC 

analysis of polyphonic timbre mixtures. The idea is motivated by the concept of 

information reduction observed in the case of sinusoidal modeling in monophonic analysis 

approaches. Given the monophonic, together with the harmonic character of the sound to be 

analyzed, a sufficient description of the sounds perceptually relevant features can be 

achieved by reducing its spectral information to the location, strength and temporal 

evolution of individual partials, while disregarding the remaining spectral information. The 

idea behind polyphonic sound description by the lower end of the MFCC’s exhibits a 

similar goal of dimension reduction, for it describes merely the general shape of the 

spectral envelope. Perhaps a similar effect of sound discrimination and identification could 

be achieved by describing a short polyphonic segment / signal burst, by the temporal 

evolution of its individual cepstral coefficients or perhaps already by their individual attack 

and release times. It is important to state however, that the two concepts of information 

reduction – partial and MFCC models – do not describe the same audible feature.  

  

1.1 The definition of timbre 

 

Indicating an unresolved terminological concern, here, a list of different historic timbre 

definitions found in literature. From today’s point of view, some may be problematic and 

even false, however, the following statements will indicate how the timbral features have 

gradually been discovered throughout the years and how much confusion is still associated 

with this term. 

 

Helmholtz’s definition – a translation from the original text 1877 : 

“...the amplitude of the vibration determines the force or loudness, and the period of 

vibration the pitch. Quality of tone can therefore depend upon neither of these. The only 

possible hypothesis, therefore; is that the quality of tone should depend upon the manner in 

which the motion is performed within the period of each single vibration.”  ...... “Certain 

characteristic peculiarities in the tones of several instruments depend on the mode in which 
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they begin and end. When we speak in what follows of musical quality of tone, we shall 

disregard these peculiarities of beginning and ending, and confine our attention to the 

peculiarities of the musical tone which continues uniformly.” ...... “The quality of the 

musical portion of a compound tone depends solely on the number and relative strength of 

its partials simple tones, and in no respect on their differences of phase.” [Helmholtz 1954] 

 

 “...timbre depends principally upon the overtone structure; but large changes in the 

intensity and the frequency also produce changes in the timbre.” [Fletcher 1934.] 

 

“… it can hardly be possible to say more about timbre than that it is a 'multidimensional' 

dimension.” [Licklider 1951] 

 

American Standards Association (ASA 1960) 

“Timbre is that attribute of sensation in terms of which a listener can judge that two sounds 

having the same loudness and pitch are dissimilar.” [ASA 1960] 

 

 “In general, we may say that, aside from accessory noises and inharmonic elements, the 

timbre of a tone depends upon (1) the number of harmonic partials present, (2) the relative 

location or locations of these partials in the range from the lowest to the highest, and (3) the 

relative strength or dominance of each partial. …depends upon its harmonic structure as 

modified by absolute pitch and total intensity… we must also take phase relations into 

account.” [Seashore 1967] 

 

“Timbre depends primarily upon the spectrum of the stimulus, but it also depends upon the 

waveform, the sound pressure, the frequency location of the spectrum, and the temporal 

characteristics of the stimulus.” [ANSI 1960,1970] 

 

 “In most textbooks timbre is defined as the overtone structure or the envelope of the 

spectrum of the physical sound. This definition is hopelessly insufficient, as I hope to prove 

by demonstrating that timbre can be expressed in terms of at least five major parameters. 

1.The range between tonal and noise-like character, 2.The spectral envelope, 3.The time 
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envelope in terms of rise, duration and decay, 4.The change both of spectral envelope 

(formant glide) or fundamental frequency (micro-intonation), 5.The prefix, an onset of a 

sound quite dissimilar to the ensuing lasting vibration.” [Schouten 1968] 

 

“Timbre means tone quality-coarse or smooth, ringing or more subtly penetrating, “scarlet” 

like that of a trumpet, “rich brown” like that of a cello, or “silver” like that of the flute. 

These color analogies come naturally to every mind … The one and only factor in sound 

production which conditions timbre is the presence or absence, or relative strength or 

weakness, of overtones.” [Scholes 1970] 

 

 “ …timbre depends upon several parameters of the sound including the spectral envelope 

and its change in time, periodic fluctuations of the amplitude or the fundamental frequency, 

and whether the sound is a tone or noise.” 

“Clearly...timbre is determined by the absolute frequency position of the spectral envelope 

rather than by the position of the spectral envelope relative to the fundamental… Von 

Bismarck found that sharpness as the major attribute of timbre is primarily related to the 

position of the loudness centre on an absolute frequency scale rather than to a particular 

shape of the spectral envelope …Low frequency tones do indeed sound dull and high-

frequency tones sharp...” 

 “… the spacing of the harmonics, determined by the fundamental frequency, is responsible 

for the timbre dissimilarity of sounds with different pitch but similar spectral envelopes.” 

[Plomp 1976] 

 

 “Timbre is, after pitch and loudness, the third attribute of the subjective experience of 

musical tones… Especially important is the relative amplitude of the harmonics. 

…temporal characteristics of the tones may have a profound influence on timbre as well … 

Both onset effects (rise time, presence of noise or inharmonic partials during onset, unequal 

rise of partials, characteristic shape of rise curve, etc.) and steady state effects (vibrato, 

amplitude modulation, gradual swelling, pitch instability; etc) are important factors in the 

recognition and, therefore, in the timbre of tones.” [Rasch et al. 1982] 
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Bregman comments on the ASA definition: 

“This is, of course; no definition at all … it implies that there are some sounds for which 

we cannot decide whether they possess the quality of timbre or not. In order for the 

definition to apply; two sounds need to be able to be presented at the same pitch, but there 

are some sounds … that have no pitch at all … Either we must assert that only sounds with 

pitch can have timbre, meaning that we cannot discuss the timbre of a tambourine or of the 

musical sounds of many African cultures, or there is something terribly wrong with the 

definition.”....“Until such time as the dimensions of timbre are clarified perhaps it is better 

to drop the term timbre.”  [Bregman 1990] 

 

“Timbre is generally assumed to be multidimensional. It is the perceived quality of a sound, 

where some of the dimensions of the timbre, such as pitch, loudness and duration, are well 

understood, and others, including the spectral envelope, time envelope, etc., are still under 

debate.” [Jensen 1999] 

 

“The word timbre is empty of scientific meaning and should be expunged from the 

vocabulary of hearing science” [Martin 1999] 

 

As we can see from the above statements, the basic definition of timbre is still a rather 

problematic issue and may cause more confusion than clarity. Although timbre is a 

prominent word in a most common musical vocabulary as well as it is a crucial component 

in the terminology of hearing science, it seams, that a consensus on a precise scientific 

definition is still due to be reached. Although the terminological debate is beyond the scope 

of this work, an indirect contribution to it can still be recognized. Since this work inevitably 

operates with this particular terminology - in order to describe its primary subject 

discussing concrete technological content - the questions of timbre definition can not be 

completely avoided. The author’s mere opinions on the definition of timbre can thus be 

observed indirectly and by bringing this up, it should only be made clear that he is 

conscious of the loose definition of “timbre”, which also the reader should be made aware 

of.    
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1.2 An overview of sound analysis/synthesis approaches 

 

The historic development of sound analysis methods went hand in hand with the sound 

synthesis methods/models. In the mid-1960s a number of approaches were introduced, 

dealing with analysis and synthesis of music and speech using computers. At Bell Labs, 

Jean-Claude Risset and Max Mathews studied the trumpet tone quality in order to 

determine the important physical correlates of trumpet timbre [Risset 1965]. They 

performed pitch-synchronous harmonic analysis of trumpet tones. This analysis technique 

assumed that the sound was quasi-harmonic and produced output data formatted in such a 

way that the trumpet tones could be accurately resynthesized using an additive synthesis 

technique. The output of their analysis stage was represented as a time series of amplitude 

and frequency values of a number of sinusoidal components. These values were then 

approximated with linear segments and formatted in such a way that the sequence of 

amplitude and time break points controlled linear ramp generators for amplitudes of the 

sinusoidal components. By systematically altering the tones' parameters, it was found that a 

few physical features were highly important for the perception and recognition of brasslike 

timbre: the attack time (which is shorter for the low-frequency harmonics than for the high-

frequency ones), the fluctuation of the pitch frequency (which is of small amplitude, fast, 

and quasirandom), the harmonic content. 

Analog vocoders were widely used for speech modeling in the 1960’s, but the 

development of the digital phase vocoder [Portnoff 1976] was the key to high quality 

analysis/resynthesis. This development depended on the availability of faster digital 

computers and the rediscovery in 1965 of the FFT [Cooley et al. 1965]. Moorer was the 

first to adapt these ideas for use with music [Moorer  1987]. 

Linear predictive coding of speech was also developed at the end of the 1960’s 

[Makhoul 1975] and later applied to the sung voice and other musical sounds. Sinusoidal 

representations of speech have widely influenced both the speech and computer music 

research communities.  

Researchers have started to explore alternate time-frequency representations and 

wavelets [Gersem et al. 1979] for audio and music applications. In the next chapters a few 
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prominent tools for sound analysis/synthesis are presented as representatives of different 

concepts / approaches they are based on.  

 

1.2.1 Sinusoidal Models 

 

The sinusoidal model tries to approximate a sound merely by a sum of sinusoids. 

 

1.2.1.1 SNDAN - programs for sound analysis, resynthesis, display  and transformation  

 

The SNDAN analysis/synthesis package [Beauchamp et al. 1997] from James 

Beauchamp’s group at the University of Illinois Urbana/Champaign (UIUC) can perform 

either a pitch-synchronous short-time Fourier (Phase Vocoder) analysis or analysis based 

on the McAulay-Quartieri algorithm [McAulay et al. 1984] 

SNDAN’s phase-vocoder analysis produces a fixed number of harmonic partials of 

a fixed fundamental frequency. The fundamental is given as a parameter to the analysis; the 

frequencies of the analysis bins are integer multiples of this given fundamental. The system 

outputs are the initial phases (in radians) for all partials, followed by a series of frames 

containing the frequency deviation and amplitude for each partial. 

SNDAN’s McAulay-Quartieri-style analysis produces a time-varying number of 

sinusoidal tracks with frequencies of any relationship. The data consists of a series of 

frames, each containing a collection of partials with amplitude, frequency, and phase, and a 

“link” field to associate partials with each other across frames.  

 

1.2.1.2 Lemur  

 

Another group at UIUC under Lippold Haken has released a sinusoidal analysis/synthesis 

package called Lemur [Fitz et al. 1995]. Lemur is based on Maher’s and Beauchamp’s 

extension of the McAulay-Quatieri algorithm. Lemur analysis consists of a series of short-

time Fourier spectra from which significant frequency components are selected. Similar 

components in successive spectra are linked to form time-varying partials, called tracks. 
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The number of significant frequency components and thus, the number of tracks may vary 

over the duration of a sound. Synthesis is performed by a bank of oscillators. 

 

1.2.2 Source – Filter Models 

 

In the source-filter analysis/synthesis methods, “source” refers to a vibrating object, such as 

a guitar string and “filter” represents the resonant structure of the rest of the instrument 

which colors the produced sound. A source-filter analysis is estimating the global spectral 

shape or the spectral envelope of a sound representing the “filter” part of the model. There 

are a number of possible techniques of estimating the spectral envelope: 

- The channel vocoder: estimates the amplitude of the signal inside a few 

frequency bands. 

- Linear prediction coding (LPC): estimates the parameters of a filter that matches 

the spectrum of the sound. 

- Cepstrum analysis: performs a Discrete Cosinus Transformation (DCT) on the 

logarithm of the spectrum (see equation 3.2), which yields an additive representation of the 

source and filter components. 

 

1.2.3 Resonance Models  

 

The work with resonance models grew mainly from singing voice research [Rodet et all. 

1989], based initially on tracked formant analyses. A (frequency, amplitude, formant 

bandwidth) triplet was used to represent each formant. At IRCAM and CNMAT a 

multitude of variations on these triplets has grown from this work. 

 

1.2.3.1 CHANT 

 

The “CHANT” system for example uses five time-domain formant wave functions (FOFs) 

[Rodet 1984.], with a particular resonance characteristic used to model individual formants. 

Those functions would generate an approximation of the resonance spectrum of the first 

five formants of a female singer. Later work extended the use of FOFs to consonants and 
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unvoiced phonemes [Richard et al. 1992]. The CHANT system however was primarily 

designed to be a synthesis tool for composers.  

 

1.2.4 Sinusoidal + Noise Models 

 

1.2.4.1 SMS 

 

The Spectral Modeling Synthesis (SMS) system, originally developed from Xavier Serra’s 

dissertation work at Stanford [Serra 1989], later became a project of his group in Barcelona. 

The particular approach of SMS is based on modeling sounds as stable sinusoids (partials) 

plus noise (residual component), therefore analyzing sounds with this model and generating 

new sounds from the analyzed data. The analysis procedure detects partials by studying the 

time-varying spectral characteristics of a sound and represents them with time-varying 

sinusoids. These partials are then subtracted from the original sound and the remaining 

"residual" is represented as a time-varying filtered white noise component. The synthesis 

procedure is a combination of additive synthesis for the sinusoidal part, and subtractive 

synthesis for the noise part. 

 

1.2.5 Sinusoidal + Noise + Transient Models 

 

The fundamental assumption behind the sinusoids + noise model is that sound signals are 

composed of slowly-varying sinusoids and quasi-stationary broad-band noises. This view is 

quite schematic, as it neglects the most interesting part of sound events: transients. Again, 

the deficiency of an analysis approach is most clearly visible at the synthesis stage. The 

Spectral Modeling Synthesis presented above gives good results when applied to audio 

signals only composed of sinusoids and noise. Once transients occur in an audio signal, 

they will eventually appear in the noise part of the signal model. This will raise the spectral 

envelope of the noise during a residual approximation, yielding a synthesized signal with 

artifacts. Also, for sound modification purposes, better results can be achieved if first, the 

signal is taken apart and the transients are treated separately. The explicit handling of 

transients provides a more robust signal model and is essential for synthesizing realistic 
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attacks of many instruments. For example, when time stretching a signal, it is desirable for 

transients to move to their proper onset locations but remain localized, while the durations 

of harmonic partials – represented by sinusoids – as well as the noise parts of a signal 

stretch. For these reasons, a new sines + noise + transients (SNT) framework for sound 

analysis was established [Verma et al. 1997]. Until today, it remains a state of the art model 

for sound analysis and synthesis [Nsabimana et al. 2007] 
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2. Monophonic Timbre 

 

 

 

The next chapters will focus on the derivation of features describing the perceptually 

relevant characteristics of monophonic sounds / timbre, mostly following the work of Serra 

[Serra et al. 1997] and Jensen [Jensen 1999]. The concepts that will be introduced are based 

on a sinusoidal model, which is certainly not a state of the art approach, compared to 

Sine+Noise+Residual model, for example. However, it is not the aim of this work to 

explore the details of a most comprehensive abstraction of a sound; instead, the following 

section should rather be understood as one component contributing to the punch line of this 

thesis, by its formal characteristics. Thus, the main purpose of theses chapters lies in 

examining the methods of timbre-feature organisation.        

 

2.1 Deriving a timbral model for musical instruments using harmonic descriptors 

 

Starting by deriving the Short-Time Fourier Transform (STFT), a sinusoidal model for 

monophonic sounds is introduced. Next, further concepts of describing the sine-model 

based timbral features are described, concluding with the following methods of their 

organisation, interpretation and further compression: 

 

·  High Level Attributes (HLA):  

Higher level information such as: pitch, spectral shape, vibrato, or attack/release 

characteristics, can be extracted from the sinusoidal or a sine+noise representation. [Serra et 

al. 1997] 

 

·  Minimum Description Attributes (MDA):  

MDA are a further information reduction. It extracts the smallest number of parameters 

necessary to define a sound from the HLA model by describing its parameters with the 

fundamental value and the evolution over the partial index. [Jensen 1999] 
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·  Instrument Definition Attributes (IDA):  

The Instrument Definition Attribute model additionally models the evolution of all 

parameters that are characteristic for a particular instrument and are captured in an 

extended range of playing styles, tempi, velocities and tonal registers. The IDA model is 

therefore a collection of many MDA sets. [Jensen 1999] 

 

The following chapters contain analysis methods for single note samples of pitched 

monophonic sounds with a quasi-harmonic character. The term quasi-harmonic denotes 

instruments whose partial frequencies are close to harmonic, excluding drums, cymbals, 

bells and other instruments with an inharmonic constellation of partials, or noise-like 

spectra. 

 

The harmonic sounds can be decomposed into additive sinusoidal components called 

partials. Those partials have time-varying amplitude and frequency. In general, the 

sinusoidals would correspond to the fundamental frequency and the harmonic overtones of 

the sound being analyzed. Then the frequencies of the partials are ideally multiples of the 

fundamental frequency. The frequency of the harmonic partials is equidistant in the 

frequency domain.  

Conceptually, sinusoidal models are rooted in basic Fourier theory, which states that 

any periodic sound s(t) can be expressed mathematically as a sum of sinusoids: 
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where t denotes time; ωk = 2πk/T the kth harmonic radian frequency, where T is the 

sinusoidal period in seconds; Ak (t), and φk  are the amplitude and phase of the kth harmonic 

sinusoidal component, and K is the number of the highest audible harmonic. 

 

For the sake of completeness it is important to mention that in real world, the sounds would 

generally not exhibit this kind of symmetry, especially in the higher spectral regions. It has 

been suggested that no partials higher than the 5th to 7th, regardless of the fundamental 
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frequency, are resolved individually. Studies have shown that the upper harmonics, rather 

than being perceived independently are heard as a group [Howard et al. 2001]. Sinusoidal 

plus noise signal model are a good way to simplify the representation of sounds. 
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where r(t) is a noise residual, which is represented with a stochastic model. However, let us 

continue with the assumption of “harmonicity” and a sinusoidal model. 

 

 
 

Figure 1. Plot of a harmonic signal with a fundamental frequency of 100 Hz, showing the evolution of 

the amplitude of each partial.1 [Jensen 1999] 

 

 

 

 

 

 

 

                                                 
1 time and frequency units used in all plots are milliseconds and Hertz respectively, unless otherwise noted. 
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2.1 FFT based analysis 

 

Most of the research in the frequency domain analysis has been based around the Fourier 

transform. Specifically, the Discrete Fourier Transform (DFT) version and its efficient Fast 

Fourier Transform (FFT) version comprise the backbone of many studies in the frequency 

domain. The FFT transforms a time domain signal into the frequency domain. The input to 

the FFT is a frame of N time domain samples, where N is a power of two. The output of the 

FFT is used to compute the power density spectrum of the window represented as N/2 

"frequency bins". The bins are evenly spaced and represent frequencies between zero and 

half the sample rate. A spectrogram can be generated by computing a series of FFTs. The 

output of each FFT represents the frequency amplitude levels over a narrow slice of time. 

The series of slices can be used to show how the frequency components of a signal change 

through time. It is also common practice for these FFT windows to be overlapping and 

averaged together to smooth out edge transitions. There is a trade-off between the 

resolution of frequency and time. Larger FFT windows can resolve more frequencies (more 

frequency bins), but are wider in time (more samples), and thus have lower resolution in 

time. Shorter FFT windows are shorter in time (fewer samples) and can therefore observe 

faster changes in time, but can't resolve as many frequencies. 

In general, the time resolution should be at least as good as the fastest transient time 

under analysis, in the order of a few ms. The FFT-based analysis can further be optimized 

by a two-pass analysis, one with a good time-resolution, and one with a good frequency 

resolution (figure 2.). For the purpose of timbre analysis however, it would be advisable to 

take into account the time resolution efficiency of the human hearing system. In this case it 

is not so important to consider a detailed frequency analysis of fast transients, since these 

would in general not be perceived as pitched sounds. The data gained by very short analysis 

windows applied to special situations including very fast transients would represent a rather 

marginal contribution to the overall timbre description.  

The FFT-based analysis is generally done on a sliding time-domain window. The 

FFT peaks are found by analyzing the FFT of a windowed time signal. 
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Figure 2. Illustration of the time / frequency window discrimination. A small time domain window 

yields a large frequency domain window, and vice verse. [Jensen 1999] 

 
2.2.1 The fundamental frequency and higher harmonic content 

 

The fundamental frequency of a musical sound is an important timbre attribute. Several 

algorithms for the estimation of fundamental frequency have been presented in the last few 

decades. The fundamental frequency estimation can be done in the time domain, the 

cepstral domain, or the frequency domain [Rabiner et al. 1976]. In the following chapters a 

rather primitive frequency domain method is presented which successfully estimates the 

pitch of most quasi-harmonic sounds. 

The fundamental frequency is generally seen as the frequency of the first prominent 

spectral peak (the fundamental partial), or as the frequency difference between two 

adjoining harmonic overtones.  

In order to find the fundamental frequency, the FFT should be performed on a 

certain segment of sound which is found right after the strongest (loudest) segment in the 

sound. The strongest is usually the “attack” segment, which is often containing too much 

transient behavior for a reliable estimation. After calculating the absolute of the complex 

valued FFT, the frequencies and amplitudes of the most pronounced peaks can be 

estimated.  
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2.2.1.1 General frequency and amplitude estimation 

 

The discrete Fourier transform X(k) of a discrete time signal x(n)  is computed as follows: 
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where the frequency bin index k runs from 0 to N-1, with N being the window size in 

samples. The resulting N samples X(k) are complex-valued: 

 

)()()( kjXkXkX IR +=                                                 (2.4) 

 

The resulting spectrum is composed of N equidistant frequency points with discrete 

frequency values from 0 to (N-1)fs/N Hz in steps of fs/N, where fs denotes the sampling 

frequency. 

 

The inverse discrete Fourier Transform (IDFT) allows for the transformation of spectra in 

discrete frequency to signal in discrete time and is defined as: 
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In general, the time signal is multiplied by a window to avoid discontinuity effects – 

resulting from sharp changes at the signal boundaries – generating spectral leakage at the 

transformation. Leakage results in the signal energy smearing out over a wide frequency 

range in the FFT when it should be in a narrow frequency range. A Windowing function 

minimizes the effect of leakage to better represent the frequency spectrum of the data. 

Possible window forms include: Hamming  Blackman, Hann, Triangular, Gaussian and 

Kaiser-Bessel windows. [Harris 1978] 
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2.2.1.2 Extraction of fundamental frequency and harmonic partials 

 

There are many ways of detecting the fundamental frequency of a signal. However, it is not 

in the scope of this work to debate extensively on the state of the art approaches. Instead, a 

rather schematic approach shall be demonstrated in the next chapters with the aim to 

exposing some basic principles and the general relations between the fundamental and its 

harmonic partials.   

In order to generate a sinusoidal representation of the signal, it needs to be reduced 

to the locations and strengths of individual peaks in the frequency domain. A general way 

of finding candidates for those harmonic partials from the frequency domain representation 

of a signal, is, by looking for peaks in the absolute value representation of X(k). At this 

point it is important to state that not all bins that are higher than the two closest neighboring 

bins should be regarded as frequency domain peaks. When selecting relevant peaks it is 

important to consider a global relation of the identified peak to the complete signal and to 

pick only prominent and explicitly pronounced peaks. The frequency of a peak fk found in 

the k-th bin can be defined as: 

 

Nkff sk /*=                                   (2.6) 
 

and its amplitude ak - within the given representation - can roughly be described by: 

 

ak=|X(k)|                                                     (2.7) 

 

The frequency differences can now be calculated, by subtracting the frequency values of all 

pairs of neighboring peaks.  

 

fd1=f1-0,       fd2=f2-f1,      ......      fdn=fn-fn-1                               (2.8) 

 

Then, all frequency differences that lie outside a certain percentage of the mean frequency 

(eq. 2.9) should be removed. The mean of the remaining frequencies can be defined as the 

fundamental frequency f0. 
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F0=mean(fd)                                  (2.9) 

 

This estimation can be used to add possible missing harmonic frequencies and remove non-

harmonic frequencies from the harmonic partial candidates. The resulting frequencies can 

now be defined as overtones of a harmonic sound.  

 

Inharmonicity is an attribute to characterize pitched sounds with partial frequencies 

deviating harmonic frequencies. Those are also described as quasi-harmonic, which implies 

that the partial frequencies can be either stretched, or compressed. The frequency of the 

harmonic partial k can thus be a little higher or lower than k * fundamental. Inharmonicity 

is an attribute of stiff strings, for example, i.e. the piano sound. This is visualized best by 

dividing the overtones by their partial tone number / index resulting in a straight line for 

perfectly harmonic sounds and in a curve for quasi harmonic sounds. 

 

 

 
Formula for the quasi-harmonic 

frequencies of a stiff piano string: 

 

2
0 1 kkffk β+=  

(2.10) 

 
  

Fig. 3: Inharmonicity  [Jensen 1999] 

 

Here, f0 stands for the fundamental frequency while β represents the strength of the 

inharmonicity. 
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2.2.1.3 Initial frequencies 

 

Once the harmonic partials of a sound are extracted from the original FFT representation, a 

good initial estimation of the frequency content of a sound is provided. This data can then 

be used to further analyze and describe the sound.  

The analyzed sounds are supposed to be harmonic or quasi-harmonic, but the 

extracted partials are often missing some harmonic partials, and can also contain strong 

non-harmonic partials, which are defined as spurious frequencies or “phantom partials” 

[Conklin 1997]. A spurious frequency is introduced, if it is sufficiently far away from the 

neighboring harmonic frequencies and if it is relatively strong compared with the 

neighboring frequencies and compared to the strongest partial. Those frequencies can also 

participate in the identification of an instrument. It is therefore necessary to consider them 

for inclusion in the sinusoidal model.  

 

2.2.1.4 Partial track 

 

In order to get a useful series of partials it is supposed that the frequencies and amplitudes 

can be connected in a series of connected lines, called tracks. The frequencies of these 

tracks can be harmonic, but they don’t have to be, and there are often some shorter spurious 

partials in between the longer harmonic tracks. Several methods for tracking partials have 

been developed with locally optimized techniques [Serra 1989] or globally optimized 

techniques using hidden Markov modeling. [Depalle et al. 1993]. When the frequencies and 

the amplitudes are slowly varying, and the sounds are harmonic, the task of connecting the 

points is fairly easy, but noise and natural variations can often mask the partials. Supposing 

the partials up to time segment k have been connected. The k-th block has N partials and the 

k+1-th block has M partials. Then, the partials should connect if the difference in 

frequency, and perhaps also the difference in amplitude, is the smallest. All the close 

frequencies are analyzed and a matching value is calculated for each one of them. Here a 

rather simple locally optimized solution: 
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where partial n from block k+1 is connected to the partial m from block k with the best 

(lowest) match. The weights kf and ka are chosen experimentally. Good results can already 

be achieved if kf  is set to one, and ka is set to zero. A more stable tracking is obtained if the 

slopes of the frequency and amplitude are used. Notably, partial crossing is then possible 

[Depalle et al. 1993]. 

Examples of partial tracks of different instruments can be seen in figure 4. 

 

 

 

 
 

 
 

Figure 4. FFT analyzed additive parameters for viola, trumpet, piano and flute. [Jensen 1999] 
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2.2.2 Envelope modeling 

 

The modeling of amplitude or other time-varying parameter in discrete time/value pairs is 

as old as electronic music. The ADSR envelope generator, which was introduced with the 

first analog synthesizers, divides the envelope in four steps, Attack, Decay, Sustain and 

Release, see figure 5. The ADSR approach operates with a reduced parameter set - defining 

amplitudes, durations and curve forms - which corresponds well with the perceptual quality 

of the amplitude.  

Generally, the ADSR model is imposed on control parameters, such as amplitude, 

or filter frequency, and not on individual additive partials. The instrument model presented 

here will abstract its real-world instance by a sum of sinusoidals, also called partials, with 

time-varying amplitudes and frequencies.  

 

 
Figure 5. ADSR envelope. 

 

The envelope is the evolution over time of the amplitude of a sound. It is one of the 

important timbre attributes. A faithful reproduction of a noiseless sound with no glissando 

or vibrato can be created using the individual amplitude envelopes of the additive 

frequency parameters. The analyzed amplitude envelopes often contain too much 

information to be easily manipulated; therefore, a model of the envelope is necessary. The 

envelope model presented in [Jensen 1999] is relatively simple, having only 4 split-points. 

The main characteristics of this model is the attack time, the sustain or decay as a 

homogenous segment of varying length, and the release time.  
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The envelope model can be seen as a data reduction of the additive frequency 

parameters. In [Horner et al. 1996], different envelope approximations are compared. 

The model introduced by Jensen combines the intuitive simplicity of the ADSR 

model with the flexibility of the additive frequency model. His idea was to model each 

partial amplitude as four time/value pairs, here called start of attack (soa), end of attack 

(eoa), start of release (sor) and end of release (eor). Furthermore, the interval between each 

split point is modeled by a curve the quality of which (exponential/logarithmic) can be 

varied with one parameter. This model does not take into account tremolo or other effects. 

The sounds are supposed to be glissando-, vibrato- and tremolo-free, but these effects can 

be added to the additive parameters at any time. 

 

2.2.2.1 Timing extraction 

 

A method for the extraction of the attack and release times – also presented in [Jensen 

1999] – finds the envelope times by analyzing the derivatives of the amplitude. The 

envelope times found are the start and end of the attack and release. The attack and release 

are found by searching for the maximum and minimum of the derivative of the envelope 

curve.  

 

 
Figure 6. Amplitude and first derivative for the smoothed fundamental of four sounds with envelope 

times. [Jensen 1999] 
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The principle is illustrated in figure 6, where the smoothed envelope (top) and the first 

derivative (bottom) are shown for the viola, the piano, the trumpet and the flute. The start 

and end of the attack and release are indicated with ‘+’. 

 

 
Figure 7. Slope times for the viola, the trumpet, the piano and the flute. [Jensen 1999] 

 
2.2.2.2 Reconstruction of the envelope 

 

An estimation of the envelope times is now available, but the curve between the envelope 

points is not known. The evolution between the envelope points can be modeled by a curve 

which has a parameter defined exponential/logarithmic slope. Obviously, no oscillation or 

irregularity is modeled, for these are assumed to be either tremolo or noise. There are five 

segments with a curve form for each partial; the start, attack, sustain, release and end 

segments. The recreated envelopes of the fundamental of the viola, the trumpet, the piano 

and the flute are shown in figure 8. The envelope split points are marked with plus signs in 

the plots. The detailed deduction of selecting and defining a best fit curve used for 

modeling one segment between 2 split points can be found in [Jensen 1999]. 

 



30 

 
Figure 8. The original and the approximated envelope for four sounds. [Jensen 1999] 

 

 

2.3 High Level Attributes (HLA) 

 

The additive frequency parameters description is a good model of harmonic or quasi-

harmonic instrument sounds, but it has a very large, non-intuitive parameter set. The High 

Level Attribute (HLA) term was introduced by [Serra et al. 1997] and can be seen as a data 

reduction of the additive frequency parameters. The HLA model is well suited for isolated 

sounds. It does not model vibrato, tremolo or glissando; however, its parameters help in the 

understanding of timbre and the perceived difference of sounds. Important timbre cues, 

such as the spectral envelope, the envelope timing, and the noise are easily extracted and 

visualized from this model. The parameters used for modeling each partial are: 
 

- amplitude envelope 

- spectral envelope 

- frequency 

- noise 

 

Then the HLA model is then further re-organized, using the Spectral envelope model. 

 

The interrelation of these four parameters is as follows. The amplitude envelope is based on 

an attack-sustain/decay-release model, where the maximum amplitude defines the second 

parameter, namely, the spectral envelope, the mean frequency further defines the frequency 

of each partial – the third parameter – and the irregularity of the partial amplitude and 

frequency models the noise of the sound (the fourth parameter of the HLA). These 

parameters will be discussed individually in the next chapters. 
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2.3.1 Amplitude envelope 

 

The envelope of each partial is modeled in five segments, a start and end segment, 

supposedly close to silent, and an attack, sustain segment and release segment. Thus, there 

are 6 amplitude/time split points, where the first and the last amplitude values are zero, 

since all partials are supposed to start and end in silence. The amplitudes are defined as a 

percentage of the maximum of the amplitude, and the times are defined in ms. The 

perceptually most important envelope parameters seem to be the attack and release times. 

These are easily calculated from the difference between the absolute times. Furthermore, 

the curve form for each segment is modeled by either an exponential, logarithmic or linear 

curve, the choice of which would depend on a best-fit approximation of the original curve 

form.   

 

2.3.2.1 Synchronicity 

 

Synchronicity is an attribute, often accompanying the amplitude envelope. It is defined as 

the degree of time alignment of harmonic partials. Synchronicity in the onset part of a 

sound can be clearly observed in many acoustic instruments. An example for non-

synchronous amplitude envelopes can be found, in woodwind instruments, where in general 

the starting time of the fundamental frequency occurs first, followed by the 2nd and 3rd 

harmonics.  

 

2.3.2 Spectral envelope 

 

The spectral envelope is defined in this work as the maximum amplitude of each partial. 

The spectral envelope is very important for the perceived effect of the sound; indeed, the 

spectral envelope alone is often enough to distinguish or recognize a sound. This is 

especially true for the recognition of vowels, which are entirely defined by the spectral 

envelope.  



32 

 
Figure 9. Spectral Envelope for the viola, the piano, the trumpet and the flute. [Jensen 1999] 

 

2.3.3 Frequency 

 

The frequency of each partial is modeled as the mean of the frequency for the sustain part. 

Assuming a stationary sound behavior, most sustained instruments are supposed to be 

perfectly harmonic. A particularly interesting representation of the parameter “frequency” 

is when the individual frequencies are divided by their partial index as seen in figure 10. 

The frequencies divided by the partial index will have a constant value for perfectly 

harmonic sound, i.e. for sounds exhibiting a constant frequency difference in all pairs of its 

neighboring partials. The degree of inharmonicity for the piano is easy to see. Notice the y-

axis scale for the piano.  
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Figure 10. Frequency divided by the partial index for the viola, the piano, the trumpet and the flute. 

[Jensen 1999] 

 

2.3.4 Noise 

 

The simplified amplitude and frequency envelopes have the general shape of the original 

envelopes, however it is easy to see that there is a great deal of irregularity left, which is not 

modeled. The noise on the amplitude envelope is called shimmer, and the noise on the 

frequency is called jitter [Richard et al. 1996]. Shimmer is an additive component in the 

frequency domain, whereas jitter increases the bandwidth of the sinusoidal. Those two 

types of noise are modeled for the attack, sustain and release segments. The noise is 

supposed to have a Gaussian distribution; the amplitude of the noise is then characterized 

by the standard deviation. Shimmer is correlated with the maximum amplitude of the 

partial, whereas jitter is correlated with the mean of the frequency of the partial.  
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Where at and ft are the time-varying amplitudes and frequencies of the partial, f is the mean 

frequency and ct is the curve found by the envelope model. 

 
2.4 Spectral Envelope Model  

 

Some perceptually meaningful attributes can be derived directly from the sound’s spectral 

envelope, which is defined as the maximum amplitude of the harmonic partials of a sound. 

A model of the spectral envelope based on those attributes is presented in the following. 

This model, using perceptive attributes, is valid for non-formantic sounds. 

 

The parameters of the spectral envelope model are: 
 

• Brightness (Spectral Centroid) 

• Tristimulus 

• Odd / Even relation 

• Irregularity  
 

 

2.4.1 Brightness (Spectral Centroid) 

 

The spectral centroid can be thought of as the center of gravity for the frequency 

components of a signal [Beauchamp 1982] and is correlated with the subjective quality of 

brightness [McAdams et al. 1995]. The Spectral Centroid, currently one of the MPEG-7 

timbre descriptors, is defined as: 
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X[k] is the magnitude corresponding to frequency bin k, f(k) is the center frequency of that 

bin, N is the length of the DFT and SC is the spectral centroid in Hertz.  
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The brightness in the “partial domain” is calculated as: 
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Here, Np is the number of extracted partials and a stands for their amplitude. If the partial 

multiplication k is replaced with the frequency of the partial, the brightness is expressed in 

Hertz. For harmonic sounds, this is equivalent to multiplying the brightness value expressed 

through the partial index with the fundamental frequency. Generally, it can be said that 

sounds with dark qualities tend to have more low frequency content and those with a 

brighter sound are dominated by higher frequencies. 

 

2.4.2 Tristimulus 

 

The tristimulus is also a descriptor for the spectral energy distribution. It measures the 

energy in the fundamental-, the first three partials, and the higher partials in relation to the 

whole energy. Since the sum of Tristimulus one, -two and -three  equals “1” only two 

values need to be calculated. The same accounts for the odd/even relation since Tristimulus 

1+odd+even equals 1. The tristimulus values have been introduced in [Pollard et al. 1982] 

as a timbre equivalent to the color attributes in the vision. They used it for analyzing the 

transient behavior of musical sounds and for classification of musical timbre. Tristimulus is 

defined by the following three equations:  
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(2.16), (2.17), (2.18) Fig. 11: Tristimulus 3 plotted against Tristimulus 2  [Jensen, 1999] 

 

2.4.3 Odd / Even relation 

 

This is a measure for the energy distribution on even and odd harmonics and is related to 

the subjective sensation of fullness of a sound. For instance the nasality and hollowness of 

the clarinet sound is caused by the dominance of odd harmonics [Benade et al. 1988]. 
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To avoid too much correlation between the odd parameter and the tristimulus 1 parameter, 

the odd parameter is calculated from the third partial. Since tristimulus 1 + odd + even 

equals 1, it is necessary only to save one of the two relations. The odd parameter is saved. 
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2.4.4 Irregularity / Spectral Smoothness 

 

Spectral irregularity also referred to as spectral smoothness (SSm) [McAdams 1999] 

basically shows the irregularity of a signal usually computed with the STFT where the 

average of the current, next, and previous amplitude values, i.e. the local mean, are 

compared with the current amplitude value. Bregman [Bregman 1990] remarks that the 

smoothness of a spectrum is an indicator for partials belonging to a same sound source and 

a single higher intensity partial is more likely to be perceived as an independent sound. It 

has also been found to be useful in revealing complex resonant structures of string 

instruments. 
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There is also an alternative version [Park 2004] of the conventional spectral irregularity 

algorithm, called Spectral Smoothness where the power of the spectrum is highlighted by 

the nonlinear square operator.  
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2.4.5 Other spectral descriptors applied to the complete spectrum (not to isolated    

partials) 

 

In the previous chapter descriptors like Brightness and Irregularity were already 

introduced. Those find use in both, the spectral and the partial domain i.e., can be applied to 

isolated partials or to the full spectral representation. Choosing which context a descriptor 

shall be applied in, depends on the spectral complexity of the signal. In order to compare, 

analyze and classify sounds with respect their timbral quality, only monophonic signals 

with a strong harmonic content should be analyzed by their partial-structure / dynamics. Of 
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course, partial behavior analysis can be conducted on any kind of sound, or a polyphonic 

mixture of sound, however it might not be the most sophisticated way to generate 

meaningful or easily interpretable information. Whether harmonic descriptors are 

applicable to a sound or not may be expressed by the HarmonicEnergyRatio descriptor, 

described below. 

 

2.4.5.1 Harmonic Energy Ratio  

 

The harmonic energy ratio (HER) expresses the amount of signal energy resulting from 

harmonic partials over the total energy of the signal: 
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where the total energy of the signal is defined as: 
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Here, N denotes the FFT frame length. 

 

Next, a few other important spectral descriptors deployed in the analysis of the complete 

FFT magnitude spectrum shall be introduced.     

 

2.4.5.2 Spectral Flux 

 

The spectral flux (SF) defines the amount of frame-to-frame fluctuation in time. It is 

computed by the 2-norm difference between consecutive STFT frames. 
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where the general q norm is defined as: 
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Xt[f] denotes the magnitude components of frame f at time “t” and Xt-1[f] at time “t-1”. Both 

frame’s magnitude components are of equal vector size. SF also known as the delta 

magnitude spectrum has also been used to discriminate speech and musical signals 

[Scheirer et al. 1997]. It exploits the fact that speech signals generally change faster than 

musical signals. In musical signals however, drastic changes tend to vary on a lesser 

degree. 

 

2.4.5.3 Log Spectral Spread 

 

The Log Spectrum Spread (SS) describes the shape of the power spectrum that indicates 

whether it is concentrated in the vicinity of its centroid, or else spread out over the 

spectrum. It allows differentiating between tone-like and noise-like sounds. The Spectrum 

Spread is defined as the RMS deviation of the log-frequency power spectrum with respect 

to its center of gravity, i.e the Spectral Centroid. The spread is somewhat similar to the 

spectral distribution found by Grey [Grey 1977] and is also compared to the richness of a 

sound, however no attempts have been made to quantify this factor. The spectral spread has 

also been specified as one of the MPEG-7 audio descriptors. It is calculated as: 
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where X[k] denotes the magnitude of the k-th frequency component (fk). SC is the 

frequency of the spectral centroid. 
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2.4.5.4 Spectral Flatness Measure 

 

The Spectral Flatness Measure (SFM) describes the flatness properties of the short-term 

power spectrum of an audio signal. This descriptor expresses the deviation of the signal’s 

power spectrum over frequency from a flat shape (corresponding to a noise-like or an 

impulse-like signal). A high deviation from a flat shape may indicate the presence of tonal 

components. The spectral flatness analysis is calculated for a number of frequency bands. It 

is defined as the ratio between the geometric mean (Gm), and the arithmetic mean (Am). 

As SFM approaches “0” the signal becomes more sinusoidal and as SFM approaches “1” 

the signal becomes more flat and de-correlated. 
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2.4.5.5 Roll-off 

 

The roll-off point in Hertz is defined as the frequency boundary where 85% of the total 

power spectrum energy resides. It is commonly referred to skew of the spectral shape and is 

frequently used in differentiating percussive and highly transient sounds (which exhibit 

higher frequency components) from more constant sounds such as vowels [Park 2004]. 
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where R is the frequency roll-off point with 85 % of the energy. 
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2.4.6 Time varying spectral envelope 

 

Until now, the analysis of the spectral envelope was demonstrated on only one isolated 

frame, with the exception of the spectral flux descriptor, of course, which is conceptually 

conceived to operate with the deviation measure of two successive frames. In general, the 

envelope constructed with the maximum amplitudes of the quasi-harmonic partials that 

occurred on a sustained segment of a sound sample, was examined. Presented were also 

descriptor concepts that were not applied to the partial model but on the complete spectrum 

instead. In both cases only one frame (one instant of a sound) was analyzed, or, at best the 

difference in two consecutive frames (e.g. Spectral Flux). Since this work is about the 

temporal character of timbre, i.e. the evolution of the spectrum across time, a time axis 

needs to be introduced to the model.  All the above introduced spectral envelope model 

parameters can of course be calculated for the time-varying spectrum.  

The time varying spectral envelope model parameters for four test sounds can be 

seen in the following figures. The tristimulus is plotted only for the times where the 

amplitude is above 10 percent of the maximum amplitude. There is no time axis for the 

tristimulus, where tristimulus 2 is plotted as a function of tristimulus 3, but the time can be 

followed from the start ‘+’ to the end ‘o’  

The spectral envelope parameters seems rather stable in the sustain part of the 

sound. The trumpet has much higher brightness in the middle of the sound than in the 

beginning and end of the sustain, even though the amplitude is rather stable throughout the 

sustain. The flute also has this behavior, although not as pronounced. The viola and the 

piano have falling brightness with time. These observations are made on the non-zero 

amplitude times. The viola has a lot of tristimulus variations, but most of this probably 

occurs in the attack. The trumpet has almost no tristimulus 1 and the flute has no tristimulus 

3. The trumpet has a relatively high odd value, and the flute has a low odd value. The viola 

has a very high irregularity where the trumpet has a very low irregularity. [Jensen 1999]. 
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Viola        Piano 

 
 

Trumpet      Flute 

 
Fig. 11: Time-varying parameters of the spectral envelope model for the viola, the piano, the trumpet 

and the flute  [Jensen 1999] 

 
By analyzing a time-varying spectral envelope, well differentiated models of harmonic 

sounds can be made. It is important to state however, that the sounds analyzed here are 

monophonic instrument samples. Although most musical instruments can be modeled like 

this, it is not a universal method for characterizing sound samples.  
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2.5 Minimal Description Attributes 

 

The Minimal Description Attributes (MDA) are calculated with HLA model parameters. 

The MDA model is an attempt to distil the minimum number of parameters necessary to 

characterize the identity and quality of an instrument. Instead of keeping one parameter for 

each HL-Attribute and partial, a model of the curve along the partial axis for each attribute 

is found and modeled using a few parameters. The MDA model is created by curve fitting 

[Lancaster et al. 1986] the data of the HLA model to a simple curve (usually exponential or 

2nd order polynomial). The MDA model generally generates two values (curves) for each 

attribute, a fundamental value, and a partial evolution value.  

 

 
 

Figure 12. Attack and release times for the 4 sounds, with the MDA model envelope times (dotted). 

Attack (top) and release (bottom) [Jensen 1999] 

 

Of course the resulting description doesn’t meet the degree of detail contained in the HLA 

model but it reflects the general trend.  

Figure 12. shows an example of the MDA approximation for the envelope model 

parameters. Details on all other parameters can be found in [Jensen 1999]. 
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2.6 Instrument Definition Attributes 

 
The instrument definition attributes (IDA) model has been introduced to collect the timbre 

attributes for many executions of the same instrument. The IDA model can visualize 

changes of timbre attributes as a function of fundamental frequency, different playing styles 

(e.g. legato and staccato, etc.) different tempi or different intensities. The IDA parameters 

are assumed to give a complete description of a musical instrument, ranging from the 

definition of the timbre of one sound, to the evolution of the timbre as a function of note or 

expression.  

This model keeps the mean of every MDA parameter for each half octave band, for 

each playing style, intensity and tempo. The IDA parameters become more stable, the more 

sounds there are in each frequency band. 

 

 
 

Figure 13. Spectral Envelope parameters for three different loudnesses for the piano. All loudnesses 

(solid), piano (dotted), mezzo forte (dashdotted) and forte (dashed). [Jensen 1999] 
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The IDA frequency range is divided into 15 bands, which range from 32 Hz to 4 kHz in 

half octave steps. All MDA parameters are then searched for each band, and the ones 

whose fundamental frequency is between the band ± 1/4 octave are used. Each parameter 

(spectral envelope, frequencies, envelope, noise, etc.), including the partial evolution, of the 

band is set to the mean of the corresponding parameter of the MDAs used.  

 

 
 

Figure 14. Spectral envelope parameters for the different styles of the cello. Complete cello set (solid), 

staccato (dotted), spiccato (dashdotted) and dashed (legato). [Jensen 1999] 

 
In figures 13. and 14. the effects of changing velocity and playing stile are visualized for 

four of the spectral envelope attributes, respectively. A detailed discussion on all other 

attributes and parameters can be found in [Jensen 1999]. 
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3. Polyphonic Timbre Mixtures 
 

 

 

The next major section of this thesis should form a counterpoint to chapter 2 (Monophonic 

timbre) and will focus on the derivation of polyphonic timbre analysis methods applied at 

musical segments where several instruments play simultaneously. An interesting work 

documenting the perception of timbre mixtures of multiple instruments was conducted by 

[Kendall et al. 1991]. The authors have collected human dissimilarity judgments for pairs 

of instruments playing either single tones (at unison or in distance of a major third interval) 

or simple melodies (again, at unison and in harmony). The test listeners evaluated the 

timbral quality of different instruments with semantic descriptions / verbal attributes like   

“rich”, “brilliant” and “nasal”. They compared the vector-like timbre descriptions of the 

composed timbres with the timbre descriptions of each individual instrument. They found 

that, to a limited extent, a quasi-linear vector model could explain the perception of timbre 

combinations on the basis of the vector sum of the positions of individual timbre vectors. 

This suggests that attributes of timbre are perceived for linear combinations of sounds as a 

sum of the individual sound attributes. However, they also point that a linear mapping from 

the physical / acoustical dimension space onto a verbal was rather unlikely. Also, many 

features discussed for monophonic sounds in the second chapter are not linear functions of 

the signal. Especially temporal descriptors such as attack / release times, but also e.g. RMS-

energy in frequency bands can not be added together this way. Therefore the computed 

value for mixtures of signals is usually not a linear combination of the individual timbre 

values. This suggests that, the characteristic timbral features computed for monophonic 

signals cannot directly extract musically meaningful data from polyphonic signals. Perhaps 

it would be possible to apply the monophonic analysis mechanisms if source separation of 

the individual components could be performed prior to analysis; however, this is still a 

difficult research problem of its own [Martin  1999], [Plumbley et al. 2002]. In the 

following chapters methods for the analysis of polyphonic timbre will demonstrated and 

discussed.  
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3.1 Mel Frequency Cepstral Coefficients (MFCC) 

 

MFCCs are a popular feature used for speech analysis and recognition. The process of forming 

MFCCs executes two basic steps. First, the information contained in the FFT representation is 

reduced (compressed) by the warping the linear frequency scale in Hz, to the Mel frequency scale 

i.e. by grouping and weighting of the individual frequency channels according to that (Figure 17). 

Second, the calculation of the Discrete Cosine Transform (DCT) is performed in order to 

decorrelate these Mel-spectral vectors, and thus compress the spectral information into the lower 

coefficients. Different approaches involving MFCCs have been widely deployed by researchers to 

model music and audio sounds [Foote 1999], [Aucouturier et al. 2005], [Morchen et al. 2005], 

etc. The MFCCs – e.g. see [Rabiner et al. 1993] – are short-term spectral features. They are 

calculated as follows: 

 

 
Figure 15. Process of generating MFCC features 

 

The Mel-scale was proposed in 1940 by Stevens [Stevens et al. 1940] as the result of an 

experiment, where the difference between the real and the sensed pitch should be detected.  

The concept of the Mel scale is to organize pitch values which were judged by listeners to 

be equal in distance from one another. Apparently, the human auditory system does not 

perceive pitch in a linear manner. The Mell mapping is approximately linear below 1000 
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Hz and logarithmic above. The Mel scale is defined in the next equation, where f is the 

frequency in Hz. 
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Figure 16. Mel scale vs. linear frequency scale 
 

Figure 17. Mel filter-bank in frequency space 
 

After the frequencies have been warped to the Mell scale, the signal is transformed to the 

Cepstral domain through the calculation of its Discrete Cosinus Transform (DCT). 

Generally, the cepstrum is defined as the inverse Fourier Transform of the log-spectrum 

[Oppenheim et al. 1968].  
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Calculation of cepstral coefficients with the IFFT. - c(n) is called the nth cepstral coefficient. 

 

In practice however, the (DCT) is used instead of the inverse DFT (FFT). The DCT is 

defined as: 
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It is similar to a DFT but it only deploys a cosinus function to modulate the input signal. 

Like the DFT, it has the property that most of the energy of its output signal is concentrated 

in the first few coefficients (thus effectively compressing the spectral information).  

The first few (low order) MFCC’s account for the spectral envelope, which 

describes the general trend of the spectral representation. The higher order coefficients, 

describe the finer variations of the spectrum, i.e. the local details.  

The fact that the logarithmic spectrum can be interpreted as the sum of two spectra, 

and therefore, the cepstrum is the sum of two components, has been exploited in the 

Source-Filter modeling approaches [Zölzer et al. 2002]. Cepstral analysis is based on the 

observation that a logarithmic spectrum can be decomposed as the sum of source and filter 

spectra. It is known that filtering in the frequency domain is achieved by a multiplication 

operation, which corresponds to adding logarithms. A filtered spectrum can thus be derived 

by adding logarithmic spectra.  

The real cepstrum method will perform a spectral envelope estimation, based on the 

magnitude of the FFT alone.  It can be written as: 

 

][][][ kEkSkX ⋅=                                                  (3.4) 

 

Taking the logarithm yields: 

 

])[(log])[(log])[(log kEkSkX +=                                     (3.5) 

 

The S term would represent an event sequence (e.g. a pulse sequence with a frequency of 

100 Hz), which can be defined as “carrier” or the sound source. The term E corresponds to 

“envelope” in the frequency domain. In other words, S varies more quickly than F. 

Therefore, it is possible to apply some kind of filter to separate log(X(ω)) into “high-

frequency” components from “low-frequency” components.  

The two components can now easily be separated by executing another Fourier 

transformation on the given signal. Roughly, the lower coefficients – resulting from the 

modulation – would represent the spectral envelope (i.e. the formants, i.e. the filter) while 
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the higher ones would represent finer details of the spectrum, (i.e. the excitation source, i.e. 

the fundamental frequency) [Oppenheim et al. 2004]. 

Looking at speech or the singing voice from the source–filter point of view of, the 

voice’s spectral envelope can be treated almost independently of its pitch. If we consider a 

concrete example, and try to transpose a vowel up by one octave, e.g. by resampling, the 

spectral envelope will be transposed as well. This effect would sound quite unnatural since 

formants are shifted up one octave, which would correspond to shrinking the vocal tract to 

a half of its length. Obviously, this is not the natural behavior of the vocal tract. Through a 

source–filter separation it is possible to pitch-shift only the source part, while the “filter” 

remains in an authentic shape. For music, source corresponds to vibrations (e.g. vibrating 

strings in plucked or bowed string instrument) and filter corresponds to the body of the 

instrument 

Since MFCC parameterization discards pitch information, it can be objected that it 

might not be an appropriate method for music analysis (as opposed to speech). However, in 

the perception of timbre, the fundamental frequency is not a carrier of significant 

information. The lower coefficients of the MFCC representations will tend to describe 

general timbral shapes rather than exact pitches.  

 

3.1.1 Organization of MFCC features 

 

In recent years, different approaches analyzing polyphonic textures were developed and 

automatic systems were conceived, which are able to extract high-level descriptions (HLD) 

of music signals. A popular approach, to describe polyphonic timbre is the MFCC 

representation described above. In order to identify temporal structure of the obtained 

MFCC features that were computed for each signal frame, they need to be organized and 

analyzed. 

 

3.1.2 Global models 

 

There are a number of modeling approaches, which do not model a temporal structure, but 

rather try to describe an overall timbral character of an analyzed sequence. The most 
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popular way of aggregating a low level feature time series is the usage of mean and 

standard deviation [Aucouturier et al. 2004]. All feature vectors are fed to a classifier which 

models the global distributions of the features of signals using Gaussian Mixture Models 

(GMM). A GMM estimates a probability density as the weighted sum of M Gaussian 

densities, called components or states of the mixture. 
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where x is the feature vector observed at time t, N is a Gaussian probability density function 

(pdf) with mean µm, covariance matrix ∑m, and wm is a mixture coefficient (also called state 

prior probability).  
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where d is the dimension of the feature vector x. The parameters of the GMM are initialized 

by random distribution and further trained with the classic Expectation Maximization (E-

M) algorithm [Bishop 2006]. 

  

 
 

Figure 18: (GMM modeling an MFCC distribution (The Beatles—“Let It Be”) – displaying three 

pronounced clusters of feature vectors. The axes correspond to the first three components from a set of 

12-dim MFCC vectors [Aucouturier et al. 2005] 
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The dimension of the feature vector equals the number of MFCCs (N) extracted from each 

frame of data. The more MFCCs are kept, the more precise the approximation of the 

signal’s spectrum, which also means more variability on the data. In this work, the interest 

lies in the spectral envelopes, not in the finer details, therefore a large number of 

coefficients (e.g. above 20) may not be appropriate. In general it can be said that the more 

Gaussian components (M) are defined to model the MFCCs, the better the precision of the 

model2. N and M are not independent and there is an optimal to be found between high 

dimensionality and high precision of the modeling. Figure 18 shows a three-dimensional 

(3-D) projection of a typical (higher dimensional) feature space. The dots represent MFCCs 

and the ellipsoids are the projection of the Gaussian distributions in the trained GMM. 

Those models however do not take into account the dimension of time as one of the 

components contributing to the description of timbre. All frames are typically modeled as a 

whole, without any account of their time ordering. 

 

3.2 Modeling the temporal dynamics of MFCC features 

 

The next step towards temporal structure analysis is the computation of first and second 

order differences amongst successive MFCC frames [Berenzweig et al. 2003], [Morchen et 

al. 2005], etc. While this method still does not model a concrete sequence of the analyzed 

events, it may provide a general, idea about the global dynamics of timbral evolution in the 

observed sequence.  

 

 
 

Figure 19: Computation of delta coefficients from a sequence of MFCC features. [Aucouturier 2006] 

 

                                                 
2  It should be mentioned here, that it is not reasonable to increase M without any limit. The model will not be 
useful in an extreme case, where M would equal the number of available feature vectors 
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The same concept can be applied to the delta coefficients again to obtain the acceleration 

coefficients. The resulting modified feature set may contain, for each frame, the static 

feature values and their local delta values. The general idea behind these concepts however 

is to describe the rate of change with reference to the temporal dimension and the degree of 

deviation in successive feature frames. 

 

3.2.1 Texture windows  

 

A method to capturing the long term nature of sound, while still assuring that the features 

are computed on small stationary windows, is to average those local static features 

(typically extracted every 50 ms) over larger-scale windows (typically several seconds) 

[Tzanetakis et al. 2001]. Several statistics can be used on such so-called texture windows, 

e.g. mean, standard deviation, skewness, range, etc. 

 

 

Figure 20: Texture windows [Aucouturier 2006] 

 

3.2.2 Dynamic features  

 

Another strategy to characterize the dynamics of the static features is to compute features 

on the signal constituted by the static feature sequence. For instance, an FFT can be taken 

on to analyze a sequence of MFCC feature frames, representing several seconds of audio. 

The FFT is executed individually, on each coefficient’s temporal trajectory (Figure 21). 

Then, the low-frequency variations of the features (e.g. [1 − 50Hz]) may be taken as 

features instead of the original ones. 
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Figure. 21: Dynamic features [Aucouturier 2006] 

 

3.3 Self similarity 

 

The next step towards temporal structure analysis can be done by increasing the time lag in 

the MFCC–frame comparison process and further, calculating derivatives between more 

distant samples as well. The method involves the computation of autocorrelation- or self 

similarity matrices and was deployed in the work of Foote [Foote 1999]. The timbral 

similarity between any two instants of the analyzed sample can be displayed in a two-

dimensional representation. Similar or repeating elements are visually distinct, allowing 

identification of structural and rhythmic characteristics. 

Self similarity and repetition is a general feature of nearly all music. That is, the 

coda often resembles the introduction, the second chorus sounds like the first, and a theme 

is more or less similar to its variations. On a shorter time scale, successive bars are often 

repetitive, especially in popular music. Figure 22 shows a self similarity plot, where an 

audio file, or better to say, its structure - in terms of timbral development - is represented as 

a square. Each side of the square is proportional to the length of the piece, and time runs 

from left to right as well as from bottom to top. 

 



55 

 
Figure 22. Self-similarity visualization - Day Tripper performed by the Beatles [Foote 1999] 

 

The bottom left corner of the square corresponds to the beginning of the piece, while the 

top right corresponds to the end. In the square, the brightness of a point is proportional to 

the audio similarity at times i and j. Similar regions are bright while dissimilar regions are 

dark. Thus there is always a bright diagonal line running from bottom left to top right, since 

the similarity of two audio segments is always at its maximum when the segment is 

compared against itself. (Technically, the autocorrelation is always a maximum at a lag of 

zero.) In figure 22 repetitive similarity features such as repeating notes or motifs, show up 
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as a checkerboard pattern. Long repeated themes are visible as diagonal lines parallel to and 

separated from the main diagonal by the time difference between repetitions. 

 The feature vectors, calculated for each frame of the signal are used to calculate the 

similarity between two audio “instants” (frames). The similarity measure implemented by 

Foote is based on feature vector correlation. Given two MFCC feature vectors derived from 

audio frames i and j, a simple metric of vector similarity s is the scalar (dot) product of the 

vectors. 

 

ji vvjis ⋅=),(                                                            (3.8) 

 

This product will be large if the vectors are both large and similarly oriented. Because the 

analysis frames, hence feature vectors, occur at a rate much faster than typical musical 

events, a better similarity measure S can be obtained by computing the vector correlation 

over a several frames. Thus: 
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To visualize an audio sample, a number of frames w is chosen, and the similarity measure 

S(i,j) is calculated for all pairs of frame combinations at start time indices i and j. Then an 

image is constructed so that each pixel at location i, j is given a grayscale value 

proportional to the similarity measure. The similarity values are scaled according to the 

maximum value, which is given the maximum brightness. 

 

3.4 Other timbre segmentation models 

 

The self similarity method proposed by Foote [Foote 1999] is retrieving merely structural 

information within a given sequence, based on the distance of each and every frame to all 

other frames. It operates with high temporal resolution i.e the results are displayed at the 

FFT frame level. While comparing every single frame or the average of several consecutive 
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frames, the aim is to generate a detailed representation of local and global musical 

structure.  

It would be very interesting however, to be able to analyze a given song on a larger 

scale and to segment it into larger sections of homogeneous timbre (e.g., extracting the 

guitar solo in the middle). This issue is addressed in a later publication by Foote [Foote et 

al. 2003], as well as in [Aucouturier et al. 2005], where a method for representing the 

timbre of whole sequence of music as a GMM of MFCC features is presented. The model is 

extended with a temporal dimension, by breaking the GMM apart in order to model a 

sequence with segments of possibly very different Gaussian distributions. A polyphonic 

musical sequence can be represented by several different (local) timbre models or feature-

cluster centers, preserving the information about particular locations of timbral quality 

changes. For instance, the song “Let it be” from the Beatles may be represented by one 

Gaussian for the texture “piano+voice” and another Gaussian for the “electric guitar solo” 

in the middle of the song. 

Once the complete – GMM based – timbre model of a given sequence (song) is 

extracted the segmentation is simply achieved by labeling each frame with the component it 

is most probably generated by. The E-M algorithm used to fit several Gaussian components 

to the trajectory of MFCCs is computed as follows:  

In his 2005 paper entitled “The way it sounds” Aucouturier explains the process of 

generating the segment models as follows. In the E-step, frames are labeled with their most 

probable segment (section) model – starting with a random distribution. In the M-step, in 

turn, the frames in each model are used to generate the segment models. After a certain 

number of iterations, all homogenous sounding segments are linked together – representing 

the different timbre models. The now generated timbre model can be used to decode further 

(unlabeled) data, i.e., to label each of its frames with its most probable component index. 

Figure 23 shows the results of such an analysis on 20 s of music, a 1960’s French 

song by Bourvil, modeled by a 3-state timbre model. Its instrumentation consists of a male 

singer accompanied by an accordion, and a discrete rhythmic section. The segmentation is 

very accurate: the background accompaniment comes at the end of every vocal phrase, 

sometimes even between the sung words. The accordion introduction appears very clearly, 

as well as the periodicities of the verse. 
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Figure 23. Segmentation of Bourvil’s song. State 0 is {silence}, state 1 is {voice + accordion + 

accompaniment}, and state 2 is {accordion + accompaniment}, plotted against time. 

[Aucouturier et al. 2005] 

 

Each of the three clusters represents a combination of instruments. One cluster has all 

frames with voice; the other has all frames of accordion, etc. On the other hand, we can also 

generate a model with more clusters, however, it is again important to consider and perhaps 

to predict how complex or diverse the timbral composition in an analyzed sequence really 

is, and thus how many clusters the model would needs to expose this diversity. For 

instance, a Vocal-Jazz song with a 50-component timbre model, would generate 17 clusters 

accounting for voice frames, 11 clusters for piano frames, ten clusters for percussive 

frames, three for double bass frames, and nine are clusters containing mixed frames. If we 

are only interested in the attributes describing instrumental mixtures, a 50 component 

analysis of a small Jazz combo, might not necessarily yield better results than a 5 

component model. 

 

3.5 MPEG-7 Higher-Level Descriptors 

 

It is interesting to see that the MPEG-7 standard [ISO 2001] formalizes a very similar set of 

transforms that are closely related to the concept of Cepstrum, in order to describe the 

spectral shape and timbral qualities. By defining low level descriptors like the 

AudioSpectrumEnvelopeD, which form the basis for the AudioSpectrumBasisD and 

AudioSpectrumProjectionD descriptor, MPEG-7 provides an autonomous framework for 

timbre similarity classification and what is more, it offers a standardized tool for temporal 
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organization of timbral textures defined within the higher-level descriptor: 

SoundModelStatePathD.  

 The following chapters describe the general MPEG-7 (audio) framework and it’s 

potential. 

 

3.5.1 A brief introduction to MPEG-7 audio 

 

MPEG-7’s most important goal is to provide a set of methods and tools for the different 

classes of multimedia content description. It defines a series of elements that can be used to 

describe content, but it does not specify all the algorithms required to compute values for 

those descriptions. The building blocks of MPEG-7 description are descriptors, description 

schemes (complex structures made of aggregations of descriptors), and the Description 

Definition Language (DDL), which defines the syntax that an MPEG-7 compliant 

description has to follow. The DDL makes hence possible the creation of non-standard, but 

compatible, additional descriptors and description schemes. This is an important mechanism 

because different needs will call for different kinds of structures, and for different 

instantiations of them. In the audio section, music-specific descriptors for melody, rhythm 

or timbre can be found. 

A low-level descriptor [Allamanche et al. 2001] can be computed from the time-

series data in a direct or derived way (i.e. after signal transformations like Fourier or 

Wavelet transforms, after statistical processing like averaging, after value quantization like 

assignment of a discrete note name for a given series of pitch values, etc.). Most of low-

level descriptors make little sense to the majority of users but, on the other hand, their 

exploitation by computing systems is usually easy. They can be also referred to as “signal-

centered descriptors”  

In addition to traditional timbre analysis methods that apply only to isolated musical 

instrument notes (as presented in the first part of the thesis), the MPEG-7 standardization is 

also designed to represent noise textures, environmental sounds, music recordings, melodic 

sequences, vocal utterances and sounds containing mixtures of sources. 

Higher-level descriptors require an induction operation that goes from available data 

towards an inferred generalization about them. These descriptors usually pave the way for 
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labeling contents, as for example a Hidden Markov Model that makes it possible to 

segment a song according to timbre similarities. Machine learning and statistical modeling 

make higher-level descriptors possible, but in order to take advantage of those techniques 

and grant the validity of the models, large sets of observations need to be gathered. Those 

descriptors are also sometimes referred to as “object-centered descriptors.” 

In the following chapters, two components of MPEG-7 audio will be discussed. The 

first is the use of decorrelated spectral features for low-dimensional sound representation. 

The second component is the estimation of general sound similarity using finite-state 

probabilistic inference models [Casey 2001] 

 

3.5.2 Decorrelated spectral features 

 

Spectrum-based features are often considered as an elementary requisite for audio 

applications, but it is widely known that direct spectrum features are generally incompatible 

with classification applications due to their high dimensionality and their inconsistency. 

Each spectrum slice is an n-dimensional vector, with n being the number of spectral 

channels; therefore, typical values of a linearly-spaced spectrum are between 64 and 1024 

dimensions.  

The MPEG-7 standard defines the spectral envelope according to a logarithmic 

frequency scale – similar to the already presented Mel scale. The spectral envelope low 

level descriptor is called AudioSpectrumEnvelopeD and consists of one coefficient 

representing the power between 0 Hz and a “low edge” boundary at 62.5 Hz; a series of 

coefficients representing logarithmically spaced frequency channels in non-overlapping ¼-

octave bands spanning between 62.5 Hz and 8 kHz; and finally and single coefficient 

representing the power above the “high edge” boundary of 8kHz. The output of the 

logarithmic frequency range is the weighted sum of the power spectrum in each logarithmic 

sub-band.  

The logarithmic form of the spectral representation already yields a dimensionality 

reduction, i.e. a sub-summation of spectral information in ¼ octave bands. This action is 

justified by taking into account the logarithmic resolution of the human auditory perception 

system. From the point of view of computational efficiency however, probability classifiers 
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require even lower-dimensional data representations. What is required is a representation 

that makes a compromise between dimensionality reduction and information loss. A well-

known technique for reducing the dimensionality of data whilst retaining maximum 

information is to use data-derived basis functions, such as computed by principal 

component analysis (PCA), singular value decomposition (SVD) or Karhunen Löve 

Transform (KLT).  

 

3.5.3 Principal component analysis 

 

Principal Component Analysis (PCA) [Smith 2002] is a widely adopted method for 

exploring multidimensional data sets. With PCA it is possible to identify unknown trends 

and cross-dimensional correlations in a collection of feature vectors. It finds a new 

coordinate system for the data set by reorganizing the data according to its decreasing 

covariance. Covariance tells whether changes in any two variables move together (are 

correlated).  The data dimensions with the largest covariance are then projected to the first 

axis of the rotated coordinate system, and are now described by a single dimension – called, 

the first principal component. The data with the second greatest variance is projected to the 

second axis, and so on.   

For the sake of convenience, a two dimensional sample data set will be examined 

distributing as in figure 24(a). Optimal lines can be found (indicated by the red and green 

lines) along the directions the sample points are distributed. PCA finds these optimal lines 

and rotates the space in such a way that the main distributing dimensions become the new 

axes (figure 24b).  

After PCA executes a rotation of the data a dimension reduction can easily be 

performed by rebuilding the data set, using only the first (strongest) principal components. 

In this way, a reduction of the data dimensionality is achieved with minimum data loss. It 

can easily be observed, that the second dimension (in the given example) does not carry a 

lot of information, thus we can simply discard it.  
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   (a) The original data points     (b) The data points rotated by PCA 

 

Figure 24. Basics of PCA [Shiraishi 2006] 

 

Implementing PCA is the equivalent of applying Singular Value Decomposition (SVD) on 

the covariance matrix of a data set, where it extracts its eigenvalues and eigenvectors. The 

eigenvectors represent the lines as we see in figure 24, namely the principal components. 

The variances along these components are contained in the eigenvalues.  

 

Computation of SVD: 

 

If for example, X is an n×k array of n observations – stored in n rows – occurring in k 

dimensions (columns), the covariance matrix ∑ is defined as: 

 

)1( −
=∑

n
AAT

                                                      (3.10) 

 

where A is a new data set with zero mean, obtained by subtraction of µ, (the k-dimensional 

mean of the n observations), from each individual observation (e.g. feature vector).                               

Next, the eigenvectors and eigenvalues are derived by Singular Value 

Decomposition (SVD), where the covariance matrix ∑ is decomposed as: 
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TVSU ⋅⋅=∑                                                       (3.12) 

 

U and V are unitary matrices. S is diagonal, and its elements are ordered in decreasing 

values. The eigenvectors od the covariance matrix ∑ are stored in the colums of V and the 

eigenvalues are held in S. The eigenvector with the highest eigenvalue is the first principal 

component of the data set and the one with the second highest is the second principal 

component and so on. The rotation of the data to the new coordinate system in the lower-

dimensional space, is simply done by matrix multiplication. 

 

L
TVXY ⋅=                                                        (3.13) 

 

where Y is the rotated, and X, the original data. VT
L is a feature vector consisting of the first 

L principal components. 

 

3.5.4 AudioSpectrumBasisD / AudioSpectrumProjectionD 

 

With Principal Component Analysis it is possible to reconstruct a spectrogram by using a 

set of decorrelated frequency basis functions. Fewer functions are required to reconstruct a 

given spectrogram than the total number of frequency channels, hence the possibility for 

dimensionality reduction. Figure 25 shows a spectrum of five seconds of pop music 

reconstructed using only four basis functions. The functions on the left of the figure are the 

frequency basis functions, those above the figure are the reduced dimension features ( 

AudioSpectrumProjectionD ) used for classification. In this case, 70% of the original 32-

dimensional data is represented by only the 4-dimensional functions.  

The AudioSpectrumBasisD descriptor contains basis functions that are used to 

project high-dimensional spectrum descriptions into a low-dimensional representation 

contained by the AudioSpectrumProjectionD descriptor. The reduced bases consist of 

decorrelated features of the spectrum with the important information described much more 

efficiently than the direct spectrum representation. This reduced representation is well 

suited for use with probability model classifiers that typically perform best when the input 

features consist of fewer than 10 dimensions.  
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Figure 25. Reconstruction of a spectrogram with data-derived basis functions; in this case the functions 

were derived from the spectrum using singular value decomposition (SVD).  [Casey 2001] 

 

 

3.5.4.1 Spectral Basis function extraction method 

 

The extraction method for AudioSpectrumBasisD and AudioSpectrumProjectionD is 

described in detail within the MPEG-7 standard [ISO 2001]. Within each step however, 

there is opportunity for alternate implementations. The following chapters outline the 

standardized extraction method for basis functions as described in [Casey 2001]: 

 

(1) Power spectrum: 

First, an AudioSpectrumEnvelopeD descriptor is instantiated using the extraction method 

defined in AudioSpectrumEnvelopeD descriptor. The resulting data will be a series of 

spectral vectors representing the selected signal frames. 
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(2) Log-scale norming:  

For each spectral vector, x, in AudioSpectrumEnvelopeD, the power spectrum needs to be 

converted to a decibel scale: 

 

)(log10 10 xz =                                                   (3.14) 

 

Next, the L2-norm of the vector elements is computed: 

 

∑
=

=
N

k
kzr

1

2                                                           (3.15) 

 

The new unit-norm spectral vector is calculated by: 

 

r
zx =~                                                              (3.16) 

 

(3) Observation matrix 

Each observation vector x~  should then be placed row-wise into a matrix. The size of the 

resulting matrix is M×N, where M is the number of time frames and N is the number of 

frequency bins. The matrix will have the following structure: 
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                                                        (3.17) 

 

(4) Basis extraction 

The spectral basis is extracted using singular value decomposition (SVD). The SVD 

algorithm can be found implemented as a built-in function in many software packages. In 

Matlab for example it can be done using the command [U,S,V] = SVD(X). The SVD 

factors the matrix from step (3) in the following way: 
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TUSVX =~                                                  (3.18) 

 

where X~  is factored into the matrix product of three matrices; the row basis U, the 

diagonal singular value matrix S, and the transposed column basis functions V. The basis 

should then be reduced by retaining only the first K basis functions, i.e. the first K columns 

of V: 

 

[ ]kk vvvV ...21=                                             (3.19) 

 

The SVD basis functions are stored in the columns of a matrix within the 

AudioSpectrumBasisD descriptor. 

 

3.5.4.2 Spectrum Projection extraction 

 

The AudioSpectrumProjectionD is the compliment to the AudioSpectrumBasisD and is used 

to represent low-dimensional features of a spectrum after projection against a reduced rank 

basis. These two types are always used together. The low-dimensional features of the 

AudioSpectrumProjectionD consist of a vector series, one vector for each frame, of the 

normalized input spectrogram . Each spectral frame from steps (1)-(3) above yields a 

corresponding projected vector: Ỹk. 

tx~

 
Figure 26. Extraction method for AudioSpectrumBasisD and AudioSpectrumProjectionD. [Casey 2001] 
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An approximation of the spectrogram can now be constructed the with the reduced 

dimension features. The individual vector pairs corresponding to the Kth vector in 

AudioSpectrumBasisD and AudioSpectrumProjectionD, are deployed in the reconstruction 

equation: 

 
T

kkk VYX ~=                                                        (3.20) 

 

3.5.5 Automatic sound classification 

 

The AudioSpectrumBasisD and AudioSpectrumProjectionD are used for automatic 

classification of audio segments using probabilistic models. In the following application, 

basis functions are computed for the set of training examples and are stored along with a 

probabilistic model of the training sounds.  The method involves training statistical models 

to learn to recognize the classes of sound defined in a taxonomy. 

 

3.5.5.1 Finite state models 

 

Sound phenomena are dynamic. The spectral features vary in time and it is this variation 

that gives a sound its characteristic fingerprint for recognition. MPEG-7 sound recognition 

models partition a sound class into a finite number of states based on the spectral features; 

individual sounds are described by their trajectories through this state space. Each state is 

modeled by a continuous probability distribution such as a Gaussian. The dynamic behavior 

of a sound class through the state space is modeled by a k×k transition matrix that describes 

the probability of transition to each of the k states in a model, given a current state. For a 

transition matrix, T, the ith row and jth column entry is the probability of transitioning to 

state j at time t given state i at time t−1.An initial state distribution, which is a k×1 vector 

of probabilities, is also required for a finite-state model. The kth element in the vector is the 

probability of being in state k in the first observation frame. 
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3.5.5.2 Continuous Hidden Markov Models 

 

A continuous Hidden Markov model is a finite state model with Gaussian distributions 

approximating each state’s probability distribution. The states are hidden since the states 

are not given along with the data. Rather, the observable data must be used to deduce the 

hidden states. The states are clusters in the feature space of the sound data, namely, the 

SpectrumBasisProjectionD audio descriptor discussed earlier. Each row of the projected 

feature matrix, defined above, is a point in an n-dimensional vector space. The cloud of 

points is divided into multiple states (Gaussian clusters) defined by multidimensional mean 

values and a covariance matrix. Figure 27 shows a representation of four Gaussian-

distributed states (vector point clouds) in two dimensions. 

 

 
Figure 27. Four estimated Gaussian states depicted in a two dimensional vector space. Darker regions 

have higher probabilities. Sounds are represented as trajectories in such a vector space, the states are 

chosen to maximize the probability of the model given the observable evidence, i.e. the training data. 

The line shows a possible trajectory of a sound vector through the space. [Casey 2001] 

 

3.5.5.3 Training the Hidden Markov Models  

 

A statistical model is trained on the spectrum projections for a sound sequence. During 

training, the parameters for a sound model are estimated from the feature vectors of the 

training set. The HMM can then be used as a classifier since it represents the temporal 

evolution of important features extracted from audio data. The forward-backward, i.e. Baum-

Welch algorithm [Rabiner et al. 1993] is used for the training of the HMMs. The procedure 

starts with random initial values for all of the parameters and optimizes them by an iterative 
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re-estimation. Each iteration runs through the entire set of training data in a process that is 

repeated until the model converges to satisfactory values. 

 

3.5.5.4 Sound Model State Path 

 

MPEG-7 defines the SoundModelStatePath descriptor, which contains the dynamic state 

path of a sound through a HMM model. Sounds are indexed by segmentation into model 

states or by sampling of the state path at regular intervals. Figure 28 shows a spectrogram 

of a dog bark sound with the state path through the ‘DogBark’ HMM shown below. The 

state path is an important method of description since it describes the evolution of a sound 

with respect to physical states. The state path shown in the figure indicates physical states 

for the dog bark; there are clearly delimited onset, sustain and termination/silent states. This 

is true of most sound classes; the individual states within the class can be inspected via the 

state path representation and a useful semantic interpretation can often be inferred. 

 The character of the sound as well as its temporal evolution can thus be represented 

by a set of basis functions and the temporal evolution of the basis projections.  

 

 
Figure 28. Dog bark spectrogram and the state path through the dog bark continuous hidden Markov 

model. [Casey 2001] 
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3.5.6 Comparison of the MFCC- and the spectral basis / projection concept 

 

Two methods for the description and analysis of the temporal evolution of polyphonic 

timbre have now been introduced and it is interesting to see that both approaches are based 

on a similar concept. 

 One of the characteristics of the MFCC method is that it transforms the linear 

frequency scale to the Mel scale. As already discussed in chapter 3.1, the Mel scale is a 

perceptual scale and is derived from the nonlinear frequency resolution of the human 

auditory system i.e. on the basis of perceived relative pitch proportions. A similar 

frequency warping is deployed in MPEG-7, within the above described and standardized 

AudioSpectrumEnvelope descriptor, which introduces ¼ octave, logarithmically spaced 

coefficients.  

The main difference however is in the transformation that follows: Computing 

MFCC, the nonlinear spectral representation is multiplied with a series of cosine functions 

(DCT) in order to achieve a compact representation consisting of decorrelated principal 

components. Similar than in the Fourier transform the multiplication (i.e., a modulation) of 

a signal with a periodic function, yields the exposure of its periodic events of the same 

frequency. The purpose of the DCT is to deconstruct the spectral representation into 

individual components shaped like the modulating cosinus functions. Thereby, the first, low 

frequent components would already exhibit the general shape of the spectrum, so all the 

higher components, would contribute a further, though proportionally less informative 

detail of the spectrum. 

On the other hand, MPEG-7 approaches the same task from a different point of 

view. Through PCA, it first has to compute, the decorrelated features (the basis functions), 

which are then used to (de)-modulate the spectrum, yielding the basis projections. In 

[Logan 2000] it was found out that PCA derived basis functions calculated for either speech 

or music signals, were very similar to cosine functions. Therefore, also the concept of basis 

projections would correspond to the above described result of the DCT.  

Figure 29. shows a sequence of 15 eigenvalues and the corresponding eigenvectors 

(basis functions), obtained by PCA on approx. 3 hours of recorded speech. In figure 30, 

shows the first 15 cosine functions used to multiply a signal in the DCT. Figure 31. shows a 
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sequence of 15 eigenvalues and the corresponding eigenvectors, calculated by PCA on 

approx. 300 minutes of Beatles songs. 

The order of PCA basis functions is slightly different than their corresponding 

cosine functions. The cosine functions are ordered with respect to their increasing 

frequency argument, whereas the PCA functions are ordered by their corresponding 

eigenvalues, which does not necessarily give exactly the same order.  In particular, it can be 

observed that the 3-th and 4-th eigenvector of the speech sequence appear to be reversed, 

compared to the corresponding cosine functions. However, their eigenvalues have almost 

the same size, which may explain the situation.  

 

 
Figure 29. The first 15 eigenvalues and the corresponding eigenvectors for the covariance matrix of Mel 

log spectral vectors for 3 hours of clean speech. [Logan 2000] 

 

It is interesting to observe that the eigenvector- derived basis functions are cosinus like, in 

particular, for the more important first few functions, with the largest corresponding 

eigenvalues.  
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Figure 30. The first 15 cosine basis functions [Logan 2000] 

 

 

 
Figure 31. The first 15 eigenvalues and the corresponding eigenvectors for the covariance matrix of Mel 

log spectral vectors for 300 minutes of Beatles songs. [Logan 2000] 
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To conclude these observations one could say that the PCA method applied in MPEG-7 can 

give a more accurate description of the analyzed signal within its first principal spectrum 

components, compared to the DCT. If, for instance several different sounds would need to 

be compared and classified and the basis functions were derived for each individual sound 

in a corpus, the first basis functions could perhaps be used as an additional classifier of 

timbral characteristics. Opposed to the cosinus functions deployed at the DCT, they would 

exhibit an individual form for each analyzed sound. Here, both the first basis functions and 

the progression of the basis projections, provide a general timbre description, as well as 

they define the evolution of timbre over time. In terms of computational efficiency however 

the DCT would outperform the MPEG-7 methods, since it does not need to perform the 

PCA in order to calculate its basis functions, rather, it assumes they are Cosinus-like. 
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4. Modeling short polyphonic signal bursts 
 

 

 

In the previous chapters a few basic concepts and approaches to timbre analysis were 

introduced, which were organized in two major research fields, namely polyphonic and 

monophonic sound analysis. The main aim of this thesis however, is to pick out and 

combine some concepts from different MIR research fields discussed in previous chapters 

and to study the claim of a possible temporal character of timbre. It was tried to find a 

model for the temporal evolution of MFCC features while reducing the amount of 

information in the extracted features as much as possible. In order to do so, several 

experiments were undertaken in which plausible quantization limits for each feature 

dimension were estimated. In terms of data reduction, three dimensions were considered, 

namely: the number of MFCCs, along with the temporal and amplitude resolution of their 

trajectories, needed for a sufficient description of a sounds timbre.  

 The sound material to be modeled by this approach were short signal bursts like 

single beats and notes with a polyphonic timbral character, which first of all had to be 

isolated from a larger context of polyphonic music.  

 

4.1 Segmentation 

 

A note onset detection algorithm that is needed to perform the task of isolating single beats 

/ notes is itself an important factor in the later comparison, recognition and verification 

process. By undertaking a prior segmentation based on note onsets, a first step towards 

extraction of musically meaningful information is already done. The polyphonic timbre 

descriptions in this work are partly based on the interpretation of corpus based query 

results, which were obtained through direct comparison of the selected timbral features. 

Thus, by aligning the start-points of all the analyzed sound snippets in the given corpus 

according to the found onset a first criterion for the later comparison / verification process 

is defined. The comparison algorithm does not blindly evaluate the distances amongst all 

available frames or their statistical average in the defined segments. Accordingly, timbre 
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similarity judgments are based the cross-comparison of selected frames with respect to their 

position in the segments, e.g. the attack segment and the particular sequence of consecutive 

segments.  

The program that was used to find the note onsets was the “Sonic Visualizer”3, 

which is being developed at the Centre for Digital Music, at Queen Mary University of 

London. Initially, only one song – “Careless Whisper” from George Michael – was taken 

for analysis. For a pop song it exposed a rather diverse instrumentation as well as a diverse 

dynamic range within itself. At this point it is important to note, that when attempting to 

model an isolated sound segment, it is crucial to confine the selection of sound material 

perhaps to a single musical genre or style. Already when choosing an onset detection 

algorithm, along with its parameter constellations, a specific onset behavior is tracked. The 

onset behavior of musical sequences may be significantly different when comparing for 

example mainstream pop music with classical vocal-polyphonic pieces. In order to find 

beats and note onsets in all kinds of musical styles, a variety of onset detection systems 

were developed.  

Onset detection in the time domain focuses on the change in the amplitude or 

energy of the signal or on the signal change in relation to the signal level. In the frequency 

domain, some authors analyze the change between the energy of successive short time 

spectra; others correlate short-time power spectra or evaluate changes in the complex 

frequency domain. Approaches using dyadic wavelet decomposition and Transient 

Modeling Synthesis have also been used. Onset events can also be found through a 

probabilistic approach where the conformity of the audio signal to a signal model is 

evaluated. The different approaches are described in detail in [Mikula 2008].  

It is not in the scope of this work to explore the pros, cons and application areas of 

different onset detection approaches. How the material used for further analysis was 

segmented was not important, thus an appropriate onset detection algorithm was selected 

experimentally, by testing several different algorithms offered in the “Sonic Visualizer” 

application. 

 

                                                 
3 http://www.sonicvisualiser.org/  

http://www.sonicvisualiser.org/
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Figure 32. found onsets on a 8 second audio excerpt from the middle of the song “Careless whisper” 

 

Through empiric verification – in form of careful listening and observations of the 

proposed onsets – an algorithm based on Spectral difference was determined as the best 

choice for segmenting pop music like in our case the “Careless whisper”. Like stated above, 

it was not crucial to explore the reasons why a particular segmentation algorithm would be 

a best choice for a particular musical style or genre. A segmentation result showing an 

arbitrarily selected 8 second excerpt (from minute 3.05 to 3.17 – e.g. from the middle of the 

song) is displayed in figure 32. It can easily be observed that the peaks in the audio file in 

general correspond to the found onsets, which are marked by pink stripes and one can 

conclude that the results are actually representing musically meaningful segments. This was 

exactly the targeted material that is supposed to represent the subject of research in this 

thesis.  

At a sampling rate of 44100 Hz, the average duration of such a segment turned out 

to be around 10.000 Samples or ¼ of a second (also visible in figure 32), thus, at a 

manually estimated average tempo of around 70 to 75 BPM, this duration would roughly 

represent a quarter note, which again is a reasonable result.   

In order to move on to the main task of finding a timbre model, it was decided to 

accept this segmentation method without further, time consuming evaluations and manually 

segmented ground truth references. 
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4.2 Timbral similarity and MFCC trajectory deviation of two arbitrary samples 

 

In the following chapters three different approaches will be documented, which 

continuously led to the concluding results about the sequential dependency and the required 

resolutions of timbral features for the purpose of classification and recognition. Common to 

all approaches is an algorithm for MFCC calculation, which was taken from the 

“RASTA/PLP/MFCC - feature calculation and inversion” toolkit4 developed at LabROSA 

– the Laboratory for the Recognition and Organization of Speech and Audio - at Columbia 

University, New York, USA. All audio snippets generated by the above mentioned 

segmentation method were transformed / analyzed with the “melfcc.m” routine. The 

following parameters were set: 

 

PARAMETER VALUE 

sample rate  44100  Hz 

frame length 2048  (samples) 

hop size 512  (samples) 

number of Mel bands 40 

Center frequency of lowest Mel filter 10 Hz 

Center frequency of highest Mel filter 16000 Hz 

 
Table 4.1 parameter / value pairs used for the calculation of MFCCs 

 

4.2.1 Exploring the timbral difference by an analysis-resynthesis model 

 

A first attempt to verify the hypothesis that timbral quality of sound may – to a great extent 

– be imposed by a particular temporal sequence of features was undertaken by deploying 

the analysis–resynthesis model shown in figure 35. The purpose of this approach was to 

find out, weather it was possible to employ a filter-bank with a time varying output gain 

section in order to alter the timbre of sample A, in a way, that it would approximate, or 

perhaps even match the timbre of sample B.  

                                                 
4 http://labrosa.ee.columbia.edu/  

http://labrosa.ee.columbia.edu/matlab/rastamat/
http://labrosa.ee.columbia.edu/


78 

 
Figure 33. an MFCC representation of an arbitrary short polyphonic sound segment (without the first 

coefficient) – showing the evolution of 39 MFCCs over fourteen, 2048 sample long windows5

 

First, two arbitrary sounds x[t] and y[t] were selected out of the corpus of 1472 sound 

snippets, previously generated by the note onset detection - segmentation algorithm, which 

was executed on the song “Careless whisper”. Both original sound segments were first cut 

to equal length and then played back one after another in order to get an audible impression 

and to observe the two different timbres. Next, each sample was transformed by an FFT 

algorithm using the above mentioned parameters (frame-length: 2048, hop-size: 512). 

Further, the absolute value of the short time energy spectrum was summed up and weighted 

by 40 Mel-spaced filters illustrated in figure 34. This operation, which was executed in the 

frequency domain, by multiplication of each signal frame with the filter impulse responses, 

yields a new - 40 chanel - signal representation, thus, compressing the 1024 bin information 

                                                 
5 the labelling of the „time(samples)“ axis in this and all following plots showing the evolution of MFCCs 
refers to the „frame length“ value. Thus, one unit in the displayed MFCC domain represents the amount of 
time domain samples defined by „frame length“. 
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from the spectral representation of the signal. The filter responses were calculated for a 

frequency range between 10 and 16000 Hz.  

In the following step a logarithm of the summed and weighted amplitudes was 

calculated and the results carried on to the next section where this set of 40 parallel signals 

was modulated by a set of cosinus functions, within the Discrete Cosinus Transformation. 

The output of this modulation finally generates the Mel Frequency Cepstrum Coefficients. 

Given the two signals x[t] and y[t] in their cepstral representation (xc[t] and yc[t]) a 

subtraction “xc[t] - yc[t]” was performed in order to estimate their cepstral deviation: ec[t].  

Parallel to the now described analysis and subtraction process, a re-synthesis engine 

was prepared, that would make use of the cepstral deviation ec[t] in order to generate time-

variant filter parameters modulating the time domain signal y[t] in such a way, that it would 

approximate the timbre of signal x[t]. The process began by generating ideal – 1024 

samples large - frequency domain Mel-filter shapes shown in figure 34. The filter-banks are 

already implemented within the RASTA/PLP/MFCC package, in the “melfcc.m” script. 

Those were then used to generate the corresponding time domain filter impulse responses, 

which were obtained via an Inverse Fourier Transformation of the frequency domain filter 

representations. 

.  
 

Figure 34. frequency domain representation of the Mel filter-bank  
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Figure 35. block diagram of the analysis-resynthesis algorithm
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Next, the built-in Matlab function “stmcb.m” was deployed to perform a Steiglitz-McBride 

iteration, which, given a time domain impulse response, estimates the coefficients 

B(z)/A(z) of a linear system. The number of pole/zeros was set to 4. A filter-bank of 40 

parallel filters, each defined by the 4 A and B coefficients was now ready to split the time 

domain signal y[t] into 40 band-passed signals. 

The Steiglitz-Mcbride iteration was chosen with the aim of reducing the 

computational demand required for the filtering process. Given a time domain filter 

impulse response, a Finite Impulse Response (FIR) filtering operation may as well be 

performed by convolving the input signal with the given filters impulse response. However, 

since the impulse responses were 1024 samples long, performing 40 parallel convolution 

processes, would turn out to be computationally rather inefficient. With the Steiglitz-

Mcbride iteration, it is possible to estimate an Infinite Impulse Response (IIR) filter system, 

with merely 4 “B” - (the feed-forward) and 4 “A” - (the feed-backward) filter coefficients. 

These would represent an adequate approximation of the FIR system, while drastically 

reducing the computation capacity required for the filtering process.    

 After performing an IFFT and taking the exponential of the signal e[c], the resulting 

data was used to drive a 40 channel – time varying – amplification stage, taking the 40 

band-passed signals (y1[t] to y40[t]) as its input, and outputting their sum ý[t], which should 

now give a similar audible impression as the first of the original samples: x[t]. 

 

4.2.1.1 Observations 

 

More than 200 arbitrarily selected pairs of sound snippets – from acoustically distant to 

similar – were compared and tried to process with this method in order to achieve a 

convergence in timbre. Different amplitude parameter weightings and ranges – from linear 

to exponential – were deployed to transfer the cepstral difference ec[t] of signals xc[t] and 

yc[t] to the amplification engine gain parameters. At this gain stage a volume adaptation of 

individual filter output channels of the selected source signal y[t] was performed, with the 

aim of achieving a timbral alteration towards the sound of signal x[t]. After several 

attempts to refine the filter parameters by increasing the number of filter coefficients, and 

further, trying to set all possible smoothing parameter values for the temporal sequence 
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adaptation at the final amplification stage, the bottom line was clear. It was almost 

impossible to get any satisfying results in terms of timbre alignment of source- (x[t]) and 

target sound (y[t]), with the initially chosen, high resolution parameters (frame-length: 

2048 / hop-size 512 / Mel frequency channels: 40), therefore, a research of possibilities 

regarding data reduction – by quantization to a lower-dimensional model – was not a 

realistic option. The best sounding results that have been observed would give a rough 

approximation of the dynamic progression of the target sound, whereas the timbral quality 

could never been successfully altered and has always adhered to the acoustic identity of the 

original source sound.  

  
Figure 36. the first 10 Mel filter-bank output channels, showing the band-passed time domain 

components of a sample sound6

 

Figure 36 shows the first 10 band-passed time domain components of a sample sound. The 

reason for displaying only 10 channels is to avoid an unclear image, which would be the 

case if displaying all 40 channels at once. Also, the Mel-filter bandwidths in the lower 

frequency regions are a lot narrower than those in the upper regions, summing only very 

                                                 
6 The axis label “time (samples)” refers to time domain samples. Sampling frequency = 44100 Hz  
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few, thus, not to distant frequency components to a single amplitude value. Therefore, the 

problem that will be pointed out next would grow even bigger in the upper frequency bands 

where the Mel-filter bandwidths increase. In figure 36, it can easily be observed that 

summing up a 1024 component spectral representation within 40 bands, results in a rather 

diverse frequency mix summed up in the individual channels, which can be inferred on the 

basis of the non-sine-like appearance of the time domain signal representation (figure 36). 

It is also an obvious conclusion that this frequency mix may occur in a multitude of 

different weighting proportions. Summing up all possible frequency combinations to a 

single overall amplitude value can thus have its source in as many different sonic situations 

as there are combinations of weighted frequency components. On a first glance, this insight 

could undermine the general credibility of the MFCC analysis as a sufficiently accurate tool 

for modeling musical timbre. However, at this point, the holistic nature of the MFCC 

representation should be emphasized, since the last step in the MFCC computation 

algorithm (the DCT) would consider the interrelations and the shape of all present – in our 

case: 40 – Mel-frequency bands for computing each coefficient. In other words, the DCT is 

bonding the influences of the energy in all frequency bands to the resulting values of 

individual coefficients. The most obvious reason however for this approach to fail is the 

fact that there is simply a lack in presence of specific frequency components or even worse, 

the lack of energy in complete frequency bands at certain times of the arbitrarily selected 

source sample (figure 36), which, in general could be interpreted as the main cause for it, 

having a different acoustic appearance than then the target sound.   

 One could argue that there is still one open possibility, to prove the given 

hypothesis – that timbral quality is connected with a particular sequence of short-time 

timbral features – by the now discussed analysis-resynthesis model. If the amount of Mel 

filter channels together with the amount of MFC Coefficients would further be increased, a 

yet more refined and differentiated filter-bank could be constructed, in order to split and 

modulate the given signal even more precisely. However, since the aim of this work - 

amongst others - is to find a reduced dimension timbre model, the decision to further boost 

the dimensions, which are already expected to deliver a high resolution timbral 

representation, would practically not make any sense.  
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For this reason, it was decided to temporarily drop any further verification attempts 

following this direction. An alternative approach, which will be presented in the next 

section was conceived, however, the idea of modulating the amplitude of individual filter 

output channels in order to alter the timbre of a source sample to approximate a different 

target-samples timbre was re-contextualized and re-applied again in the final sections of 

this work.            

 

4.2.2 A corpus based approach for determining timbre similarity 

 

After failing to take any successful steps towards the verification of a sequential inter-

dependency of timbral features, let alone a dimension-reduced model of timbre 

representation with the analysis-resynthesis model, an alternative - corpus based - method 

was implemented, aimed at the verification of the temporal character of timbre in the first 

place. The general idea is visualized in figure 37.  

 

  
  
  
  
Audio segments MFCC analysis 

 
Figure 37. Schematic display of the query-by MFCC feature similarity algorithm 
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The corpus contained all sound snippets gained by the segmentation of the song “Careless 

whisper”. The goal was to first select an arbitrary target sample from this corpus and to find 

the most similar sounding segment out of the same corpus in the next step. Therefore, all 

sound segments were first transformed to the cepstral domain - with the high resolution 

parameters defined in table 4.1 - and stored in a database. At this resolution, a sound 

segment with the duration of 10240 samples or 0,232 seconds would be represented by a 

663 dimensional vector, or a 17 timepoints * 39 cepstral coefficient7 large plane (matrix), 

with the first cepstral coefficient excluded from evaluation and the comparison process.  

 

 
Figure 38. Sorted distances – upper image: first 100 closest sounding samples – lower image: all 1200 

compared samples  
 

This data structure can also be interpreted as a time-feature vector, representing one point 

in the multidimensional feature space, which is describing the temporal evolution of the 39 

                                                 
7 This precise declaration of sample length was chosen in order to generate a comprehensible MFCC 
conversion result, regarding the dimensionality of the feature space. 10240 is an integer multiple of the 
deployed frame length. The Transformation of signals with the sample length between 10240 and 12288 
would thus yield a MFCC time-feature vector of equal dimensionality (663), since the MFCC conversion 
algorithm would cut off the remaining – backmost – samples resulting from the modulo operation: “sample 
length % frame length”      
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dimensional short-time MFCC feature vector at a high resolution. In the next step, this 

arbitrarily selected sample would be compared to the all other samples in the database, by 

calculating the Euclidean distance to all vectors describing the corpus samples.  

Figure 38 displays the results, i.e. the distances between a selected and all other 

corpus samples, sorted by increasing value. There were 1471 samples in the corpus. Before 

comparing 2 samples, the duration of both is adapted – cut to equal, and the resulting 

distance proportionally weighted, however, under a condition of a maximum length 

deviation of 10%. If the discrepancy in duration of two samples exceeds this tolerance 

limit, the corresponding source sample is not included in the distance evaluation process. 

The weighting of source samples exhibiting a different length than the target sample was 

performed as follows. If, lets say the source sample length would deviate from the length of 

the target sample for “+” or “– “ 10%, the score gained through the comparison process has 

also been considered as a 90 % portion of the actual 100% score which was proportionally 

estimated in the next step. In an extreme case for example, where the selected source 

samples MFCC description would fully match the MFCC description of the target sample, 

but at the same time, both would exhibit a 50% discrepancy in length in either way, it 

would not be appropriate to regard this particular source sample as the “best fit”, since 50% 

of it, or of the target sample was not even considered in the comparison process.  

In the above stated example only 1200 out of 1471 samples were considered due to 

the 10% maximum deviation limitation. In a case, where the selected target sample is 

extremely long or short, the amount of eligible source samples meeting the condition of a 

similar duration would turn out to be even much lower.   

The results of this approach were very promising. It was observed that it was 

actually possible to retrieve acoustically similar sounds with the comparison of the MFCC-

trajectory based feature vector and the evaluation of the shortest measured distance. It was 

quite easy to evaluate the results, since the first suggested corpus sample would always 

have matched the instrumentation of the target sample, and what is more, the second, third, 

and so on closest matches would exhibit a timbre which was slowly drifting away from the 

target sample, very often keeping the same instrumentation in the first 6 to 7 closest 

matches.  
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In the next step, another test aimed at the verification of the sequential dependency 

of timbral features was performed. Here, the trajectories of the first five MFCC coefficients 

were reversed, which was an action that would preserve the statistical appearance of the 

feature vector time series, in terms of mean value and variance8. By reversing 5 out of 39 

trajectories of the target sample and performing the above discussed comparison process 

again, an interesting result was observed. As it was expected, the now found closest 

matches form the corpus samples had a rather different acoustic appearance than the target 

sample, but again they exhibited a slowly fading acoustic similarity amongst themselves.   

 

 
Figure 39. First 6 MFCC trajectories: 1. Original and 2. First 3 trajectories reversed  

 

The next experiment involved a query based on the information contained in the trajectories 

of first 6 MFCCs (coefficients 2 to 7) alone. Amazingly, the results have matched the query 

                                                 
8 In the MIR literature, the mean and variance are amongst the most popular classifiers when describing sound 

segments represented by MFCC features.   
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containing all 39 MFCC trajectories to a great extent, often introducing merely a change in 

the order of the first 10 closest matches. Again, the query was repeated, now with the first 

three trajectories time reversed (Figure 39.), yielding a very similar result as in the 

experiment with 39 MFCCs and the first 5 reversed, discussed above.  

The fact that merely changing (reversing) the sequence of short-time timbral 

features has a significant impact on the perception of timbre was perhaps the most 

remarkable discovery in this research work. The results of this simple test might perhaps 

raise the demand for reconsideration of the most common methodologies in statistical 

timbre analysis and classification. This work does not include a deeper research of 

statistical timbre modeling concepts aimed at genre classification, music- / artist- / inter-

song similarity research and therefore it could perhaps be inappropriate to comment on 

those in this context. However, it is still a bit peculiar to find contemporary research work 

from these categories, where it is still being tried to compute music similarity measures 

while not considering a prior – musically meaningful – segmentation, let alone the 

possibility of a sequential interdependency of timbral features and timbre perception. In 

some of the latest publications at the ISMIR conference: [Gasser et al. 2008], [Flexer et al. 

2008], a statistical representation of a song is generated by training a Gaussian model with 

the first 20 MFCC values, collected throughout the song. If considering a sequential timbre 

model, perhaps the dimensionality in the MFCC domain could be reduced, while some 

more relevant timbral information could be captured by directing the attention towards the 

temporal dimension.    

 

4.2.2.1 Data reduction 

 

The aim of this work was not only to demonstrate the sequential dependency of timbral 

features but also to find a reduced dimension model exploiting the sequential dependency 

for this purpose. The testing began with a high resolution representation of the sound (40 

MFCCs / 2048 sample frame length / 75 % overlapped). 

 First, the number of MFCCs was reduced, by gradually excluding the higher order 

coefficients. The comparison process was executed for each reduced set of coefficients, and 

it was observed that the results (the closest matches) obtained with only the first 10 
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coefficients, would be highly similar to the results generated with the full-sized set, 

operating with all 39 coefficients. Even with only the first 6 coefficients it was possible to 

get very reasonable sounding suggestions in the first 5 to 6 closest matches. 

 Despite those interesting observations, the problem with this corpus based approach 

is that it is not really possible to draw precise conclusions from the results, since one is 

always confined to the finite size of the available corpus. It is not possible to judge on the 

audible consequences of fine changes of feature values or to gradually approach and define 

the limit of perceptually relevant deviations in those values or in their resolution. The finite 

corpus size would necessarily introduce discontinuities with the limited available data, 

which would definitively account for false results. This is also the reason why the search 

for a dimension reduced timbre model in the temporal and amplitude domain was not 

pursued further with this – the corpus based – method.  

 

4.2.3 Re-synthesis by band-passed noise + estimating a model 

 

Having made one step further by roughly demonstrating a sequential dependence of MFCC 

features within a timbral character, the task of reducing the dimensionality of the sequential 

model and to finding a limit of perceptual relevance supporting that model was still open. A 

third approach was chosen, which would estimate the reduced dimension timbral model for 

purely synthesized sounds. The sounds used in the previous examples were re-utilized 

again here and taken as a model for the synthetic sounds.  

 First a full resolution MFCC analysis was performed on the real world sounds, with 

the high-resolution parameters already defined above. Next, the function “invmelfcc.m”9 

was deployed in order to re-synthesize the original sound back from its MFCC 

representation to a time domain signal. The re-synthesis is performed, by band-pass 

filtering white noise frame by frame, by a 40 channel Mel-spaced filter-bank.    

 The resulting time domain signal would sound like a noisy version of the original 

sound, yet preserving an impression of its initial timbral quality. The benefit of such a 

signal however is, that it would allow any kind of manipulation of its parameters in the 

cepstral domain while making the changes audible after an inverse transformation. Thus, a 

                                                 
9 Found in “RASTA/PLP/MFCC - feature calculation and inversion”  from LabROSA 

http://labrosa.ee.columbia.edu/matlab/rastamat/
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search for quantization limits is a slightly more realistic task as if working with a finite 

corpus which wouldn’t allow a precise manipulation range and would therefore produce 

unreliable results.  

 

 MFCC 40 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
MFCC 39 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
   : Sound „A“    : 
   :   
MFCC 21 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
     

 MFCC 20 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
MFCC 19 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
   : Sound „B“    : 
   :   
MFCC   1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
     

 
Figure 40. Morphing between the sounds: “A” and “B”, by replacing individual trajectories of MFCC 

coefficients. Both sounds are synthetic (composed by 40 channel band-passed noise) which enables an 

authentic time domain reconstruction of the MFCC morphing.   

time

 

Similar to the first approach where it was tried to transform one sound into another by 

manipulating the gain stages of individual filter outputs, an idea of morphing sound “A” 

into sound “B” was utilized again here. Two sounds with a distinct timbre were selected 

and resynthesized with “invmelfcc.m”. In the next steps the individual MFCC trajectories 

of sound “A” were successively replaced with those of sound “B”, starting with the 40th - 

the highest order - coefficient and continuing towards the first. Figure 40 shows the concept 

of replacing the individual MFCC trajectories. The example displays a temporary state 

from the middle of the morphing process, representing a sound segment, composed from 

the upper 20 MFCC trajectories of sound “A” and the lower 20 of sound “B”. After each 

coefficient trajectory was replaced the sound was played back and the changes in timbre 
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subjectively compared to the original sounds “A” and “B”. Similar to the second 

experiment, with the corpus based retrieval of most similar sounds, it was observed that the 

perceptually relevant acoustic effects would slowly start to appear after the replacement of 

the first 30 highest order coefficient trajectories. So, the sound would not effectively start to 

morph its timbral character until the 10th and the next lower coefficient trajectories have 

been replaced.  

A second empirical test regarding the effects on the perception of timbre, similar to 

the prior, was performed with the MFCC trajectory replacement order reversed. Starting by 

replacing coefficient number 1, 2, 3 and so on, a drastic change of morphing speed was 

observed, making sound “B” appear very clearly already after replacing the first 5 

coefficients. What is more, the timbre character of sound “A” would immediately alter 

towards that of sound B, already at replacement of the first coefficient. That was indeed an 

interesting insight, since in the previous (the corpus based) experiment the first coefficient 

was always excluded from the comparison and retrieval process, for it was assumed that it 

merely carried the information about the short time energy content of the signal, or its 

overall loudness, which was not expected to be of relevance for the timbral identity of a 

sound.   

 

4.2.3.1 Verification 

 

Until now, only tests regarding the data reduction in the first dimension – the amount of 

MFCCs – were carried out, while the possibilities of temporal and amplitude quantization – 

let’s call them dimension 2 and 3 – still remain unexamined. Another disadvantage of the 

experiments carried out thus far, is the selected mode of verification. All judgments on the 

contribution of the MFCC features to the timbral identity of the sounds were made on a 

subjective basis of acoustic evaluation carried out solely by the author himself.    

 Striving to avoid listening tests involving a multitude of selected individuals, an 

alternative verification method was needed, which could impose a measurable indication 

confirming the subjective acoustic observations already made by the author. 

 A method of estimating the variance in the de-trended version of the temporal 

MFCC-trajectory data set was implemented with the aim of evaluating the contribution of 
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each coefficient according to the presence of its variance in relation to the variance of the 

remaining coefficients. The degree of variance in MFC coefficients was assumed to be an 

indicator for the importance and the informative value of a coefficient in describing a 

timbral feature. In order to obtain a reliable estimation on the variance of each coefficient, a 

de-trended reference is needed, for the isolated beats and notes from pop music always 

exhibit a peak at the onset and fading amplitude character along with the further 

progression of the note. The native Matlab function “detrend.m” was deployed here, since it 

removes the best straight-line fit linear trend from the analyzed data.  

 

Segmented audio corpus 

audio 
 

     …………… audio 
 

audio 

MFCC 
 

MFCC 
 

MFCC      …………… 

Processing 
stages 

MFCC 
(detrend)

MFCC 
(detrend) 

MFCC 
(detrend) 

     …………… 

variance estimation 

 
Figure 41. Schematic display of the variance estimation algorithm. The boxes indicate segment 

boundaries determined by onset segmentation. The linear trend in the temporal MFCC trajectories is 

eliminated from each audio segment individually before the variance is calculated. 
 

Figure 42 shows an example of the de-trend principle. In figure 41, the audio processing 

stages in the MFCC-trajectory variance estimation procedure are displayed. The results 



93 

represent the averaged variance across the whole corpus of 1471 sound snippets and were 

not to difficult to interpret (figure 43). Figure 43 shows a steep decrease of the variance in 

the first 5 coefficients. From coefficient number 6 to 40, however a slowly fading linear 

trend can be recognized with very similar, almost constant variance values. This and the 

following variance plots display the mean variance value, averaged over all segments (left 

image), while the right images show the variance of this variance.  

Going back to the listening examples, perhaps no one would argue the claim that the 

contribution of the highest order coefficient (no. 40) is rather marginal and thus it could be 

excluded from the sounds timbral model without any further concern. Now, if taking into 

account its variance, which could be an indicator of the coefficients contribution or better to 

say, an indicator of the relative importance of the timbral feature this coefficient is 

describing, it could well be asserted that other timbral features, modeled by other 

coefficients exhibiting similar variance values, could also carry only relatively marginal 

information on the sounds timbral quality.  

 

 
Figure 42. Original and the de-trended version of an MFCC trajectory  

 

To conclude with, the acoustic observations where the most important carriers of timbral 

information were found to be the first 5 to 6 coefficients could be confirmed by the results 

of the MFCC-trajectory variance analysis. 
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4.2.3.2 Amplitude and time quantization 

 

Having analyzed the possibilities of data reduction in the first dimension (The amount of 

MFCCs), there was still an open potential to reduce the data by quantizing the values in the 

time and amplitude dimensions of the MFCC representation.   

 
Figure 43. The variance plots of individual MFCCs at the following resolution: (FFT frame length: 

2048 samples / hop-time: 512 samples / no quantization of the amplitude values)  

 

Amplitude quantization: 

 

Following plots show how the variance of individual MFCCs changes if the MFCC 

amplitude is quantized to integer values. The displayed quantization step-sizes are “1”, ”2”, 

“3” and “7”. Parallel to the variance estimation also listening tests were conducted with 

arbitrarily selected, amplitude quantized sound samples. Through the author’s subjective 

evaluation, it was found out that the acoustic examples would preserve an authentic 

acoustic impression up to a minimum step-size 2. 
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Figure 44. Variances of individual MFCCs amplitude-quantized with smallest step-size “1”.  

 

Figure 45. The variances of individual MFCCs amplitude-quantized with smallest step-size “2”. 
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Figure 46. The variance of individual MFCCs amplitude-quantized with smallest step-size “3” 

 
Figure 47. The variance of individual MFCCs amplitude-quantized with smallest step-size “7” 
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In the variance plots, it can be observed that there is a tendency of the variance to increase 

in the first coefficients, while the variance in the higher order coefficients is pushed 

towards zero (figure 47). In general, the higher order coefficients have very low amplitudes, 

therefore it was well expected that their variance values would run towards zero after 

quantization. More relevant however for determining the acceptable quantization limits are 

the lower order coefficients, which is why it is important for their variance values not to 

grow to large. Perhaps, in this case it would be important to observe and to limit the 

variance of the first 5 coefficients. If the original version – without amplitude quantization 

– (figure 43) is compared with the quantized versions in figures 44 and 45, it can be seen 

that the value of the variance in the first coefficient is held between 3 and 3,5, while the 

overall shape remains identical. In figure 46, the value of coefficient 1 is already 3.8 and 

coefficient 4 is twice as large as in the original version, which might be an argument for 

reaching a limit in the acceptable quantization step-size.  

 

Figure 48. MFCC-trajectories, amplitude-quantized with smallest step-size “1” 
 

Figure 47, is displayed for tendency-demonstration purposes only, since the quantization 

step-size “7” would already yield rather mutilated acoustic results. Figures 48 and 49 show 
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the amplitude-quantized MFCC trajectories of the same, arbitrarily selected sound sample, 

with quantization step-size “1” and “3” respectively. The image in figure 49 could be 

another apparent argument for the rather bizarrely sounding inversion (sonic 

reconstruction) of the amplitude-quantized MFCC trajectories. 

 
 

Figure 49. MFCC-trajectories, amplitude-quantized with smallest step-size “3” 
 

 
Time quantization: 

 

Until now, all transformations were done with the same time resolution (frame-length: 2048 

samples / hop-time 512 samples), at a sampling rate of 44100 Hz), which also is in 

conformance with standard resolutions applied in related work like: [Foote 1999], 

[Aucouturier et al. 2005], etc. According to the author’s personal acoustic judgments, any 

transformations done with higher resolutions would not yield any better acoustic results, so 

those parameters were assumed to represent a high resolution standard.   

 In the next step, the possibilities of augmenting the hop-size and replacing the 

missing data using linear interpolation were studied. Figure 51 shows a MFCC trajectory 
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plot, with a hop-size of 2048 samples, i.e. with no overlap of analysis frames, while 

reconstructing the missing values with linear interpolation in order to preserve the original 

sample density. The corresponding MFCC variance values are shown in figure 53 and if 

compared with the variance values of the full resolution analysis (figure 43) a decline of the 

values at all coefficient can be observed, which is coherent with the theory and thus, a well 

expected consequence. Again, most of the attention shall be directed towards the changes 

taking place in the variances of the first coefficients. An indicator for reaching a 

quantization limit is – like in the amplitude quantization above – the variance deviation 

magnitude – with reference to the optimal resolution. It is rather difficult however to set a 

boundary condition for this case, so the results of realizations deploying different 

quantization parameters can merely be compared amongst themselves i.e. judged on a 

relational basis. Listening tests on the other hand have still shown an acceptable acoustic 

reconstruction of the original sample at this particular resolution, combined with linear 

interpolation between sample points.  

 
 

Figure 50. MFCC-trajectories, - same sample as above - no quantization  
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Working with an average sound-sample length of 226 milliseconds or 10.000 samples, 

there are not many more options for a larger time-frame quantization. A test with a hop-size 

of 4096 samples was conducted, yielding unacceptable acoustic results, also confirmed by a 

drastic decrease of variance values (figure 54). The problem with the larger hop-sizes (e.g. 

4096 samples) is also the following. If, for instance, sounds with a duration under 10240 

samples – which is the case with about 700 out of 1471 samples in the here analyzed sound 

corpus – are taken for analysis, the output result would be represented by two temporal 

values (for each coefficient), resulting in an unrealistic variance value. Perhaps, a 

reasonable minimal number of sample points for describing 1/4 of a second long audio 

snippets can be defined to “4”, making a hop-size of 2048 samples a reasonable choice. The 

frequency rate, at which temporal changes in the amplitude values of the first MFCC 

coefficients take place seem to be low enough for minimizing the data loss at an 

approximation via linear interpolation.  

 
 

 
 

Figure 51. MFCC-trajectories, - FFT frame-length and hop-size = 2048 - with linear interpolation 
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Figure 52. MFCC-trajectories, - FFT frame-length 2048 and hop-size =4096 - with linear interpolation 
 

 
 

Figure 53. Variances of individual MFCCs: frame-length and hop-size = 2048  (linear interpolation) 
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Figure 54. Variances of individual MFCCs with FFT frame-length 2048 and hop-size = 4096 and linear 

interpolation 

 

4.3 A possible practical application 

 

The research work presented in this thesis was motivated by an idea of realizing a concrete 

musical application based on sound sample similarity. Unfortunately it is not in the scope 

of this work to debate extensively on this particular application, in fact the thesis results 

would firstly represent a basis on which further tests and steps towards the realization of the 

application are yet to be conducted. 

The conceived application is based on the idea of sound modulation 

(transformation), however the aim is not to actually modulate a given sound but rather to 

define the modulation parameters in the first step and then to replace the given, target sound 

with an existing real-world version taken out of a giant corpus, implying an extensive user 

network as an ideal scenario. From this point of view, the task of defining and interfacing 

the modulation parameters was the primary goal of this thesis. First tests were already 
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conducted within the context of the corpus based algorithm presented in section 4.2.2. A 

conceptual design of a “difference plane” interface was implemented, where the user could 

manually model a plane (figure 55), which would represent the difference between the 

temporally arranged values of the first 5 to 6 MFCCs, modeling two distinct sound samples 

i.e. the timbral distance between the target and the desired source sample replacing it. The 

length of the difference plane would depend on the choice of the target sample, where each 

value on the time axis would represent a 2048 sample long signal block. The amplitude 

values were confined to a minimum quantization step-size with value “1”. In the next step, 

this difference plane could be imposed on a whole sequence of previously segmented sound 

snippets and could thus alter, or better to say, replace a target sequence of originally 

connected samples with an alternative sounding sequence of originally discontiguous 

samples, sharing a common character.  The search for of the closest match would look as 

follows.  

T[c] - S[c] = d[c]          (4.1) 

 

The cepstral difference plane: d[c] is the result of subtracting the temporal progression of 

the first 5 MFCC values representing the source sample S[c], from the same representation 

of the selected target sample T[c]. The user however is supposed to select a target sample 

and further, to model the desired difference plane. The MFCC model of the closest 

sounding source sample is determined by subtracting the difference plane from the target 

sample MFCC representation. The search for the actual sample is continued by comparing 

the distances between the ideal (the computed) source sample – respectively its MFCC 

representation – and the MFCC representations of all samples in the available corpus. The 

closest match is selected by calculating and evaluating the Euclidean distance between the 

desired and all other vectors describing the corpus samples. Whether the Euclidian distance 

measure is the best choice for this purpose is not clear and could be subject of further 

research. Perhaps the search results could be improved by weighting the contributions of 

individual coefficients in accordance with their priority in describing the timbral quality. 

For a proper functionality of this application however, an extensive corpus of sound 

material would be required, ideally realized as a networked audio plug-in. 
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Figure 55. MFCC difference plane – a possible interface for sound “modulation” 

 

4.4 Conclusion 

 

In the first place, this thesis was motivated by an idea for a practical application based on 

timbre similarity, which however was in the background throughout the work.  

In order to gain insight into existing timbre modeling approaches, a broad amount of 

research work was studied and the crucial steps and conclusions summarized in the 

chapters 2. and 4. This was done very systematically with the aim of exposing and 

legitimatizing some methods, which would get recombined in the main idea of the thesis, 

which was introduced, analyzed and documented in chapter 4. Starting with the 

examination of monophonic timbre modeling techniques on one hand and continuing with 

the research of polyphonic timbre analysis techniques, on the other, a concept of describing 

very particular sonic material - namely short polyphonic beats and notes, isolated from a 

larger context of a musical sequence - was introduced. In the proposed method, formal 

concepts of arranging features calculated with monophonic music analysis tools were 
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applied for modeling the content, or better to say the features generated with polyphonic 

signal analysis methods. The main idea behind this strategy was the assumption that a 

particular temporal sequence of timbral features would represent a highly important factor 

for timbre classification. This concept could represent an alternative to the mainstream 

methods from the field of polyphonic music analysis research, which do not pay attention 

to the temporal character of timbre, instead they rather operate with statistical – “bag of 

frames” – timbre models, applying to longer sequences of polyphonic music. 

 A number of approaches aiming at the verification of the timbre’s temporal 

character were introduced and documented. In chapter 4.2.3 time, amplitude and MFCC 

quantization parameters were deduced, proposing a temporal model at a reasonable 

resolution, so that an acoustic reconstruction would preserve an identical and recognizable 

timbral image compared with the original sound sample. This model can be used for timbre 

classification and identification of previously segmented sound material exhibiting a 

polyphonic character.  

 Regarding the complicated question of timbre definition however, no concrete 

conclusions can be drawn from this work. Perhaps if the work would be continued and the 

application proposed in chapter 4.3 actually implemented at its full extent, some 

conclusions regarding the timbre definition could be drawn based on the user experience 

and feedback. Until then, perhaps one would best keep out harm’s way by sticking to the 

definition of Keith D. Martin from [Martin 1999].       
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