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Abstract

This thesis attempts to recognize national variants of German in Austria and Germany using
only prosodic features.

An introduction to speech processing with spedal consideration of speech recogrition and
language identification is given. Fundamental frequency (FO) and Intensity of the speech
signal are analyzed. Parameterization o FO (Fujisaki, Intofit) is carried aut and statistical
features (Standard deviation, skewness kurtosis, percentiles) are calculated from signals
such as derivative and corrdation of FO and Intensity.

The features are evaluated using the t-test and a simple clasdfication algorithm using
combinations of up to three features. Combinations with Fujisaki parameters yield the best
results with recognition rates of 72%

The small size of the data-corpusis a drawback of the study.

Zusammenfassung

Diese Diplomarbeit versucht allein aufgrund prosodischer Merkmale die nationalen
Varietdten des Deutschen in Osterreich und Deutschland zu unterscheiden.

Eine Einfihrungin die Sprachverarbeitung mit besonderer Beadhtung von Spracherkennung
und Sprachenidentifikation wird gegeben.

Es werden die Sprachgrundfrequenz (FO) und Sprachintensitét analysiert. Methoden der
Parametrisierung der FO aus der Sprachsynthese werden verwendet (Fujisaki, Intofit).
Statistische Merkmale (Standardabweichung, Skewness, Kurtosis, Perzentile) von Signalen
wie Ableitung, Korreation von FO und I ntensitét werden berechnet.

Die Merkmale werden mit dem t-Test und mit einem einfachen Klasgfikationsalgorithmus
evaluiert. Es werden bis zu 3 Features kombiniert, wobei Kombinationen mit Fujisaki
Parameter die besten Ergebnisse mit Trefferquoten von 726 erzielen.

Ein Schwadpunkt der Untersuchungen ist der kleine Datensatz von 90 Sétzen pro rationaler
Varietét.
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I ntroduction

1. INTRODUCTION

1.1 Why would one want to identify regional variants of

German?

German is a so-called pluricentric language with different national and regional variants
[Muhr200Q. For speech dialog systems and speaker-independent speech recognition in
general, special consideration of these differences is necessary. Speed recognition engines
trained on a special regional variant have difficulties to recognize speech from a speaker
with a different variant than the one the model is trained with. Another application is to
choose a regional similar synthetic speaker in human-computer speech dalog systems,
because a familiar variant of the language is generally perceived with more sympathy than a
very unfamiliar one. Thisis afact that might influence ones wil lingnessto spend money.

As part of the SpeechDat project a corpus for telephore speech was recently acquired for
Austrian [Baum 2000]. This opens the way to Austrian models for speech recognition. A
preprocessor prior to the phore recognizer should dedde which model of a variant of
German is neaded. This thesis is exploring how prosodic differences can be used to
distinguish Austrian German'* from the variant of the language spoken in Germany.

1 In the text the variant of German spoken in the Republic of Austria will be referred to as Austrian and the
variant of German spoken in the Federal Republic of Germany will be referred to as German
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I ntroduction

1.2 Structure of this thesis

After some badkgroundin human speech production and linguistic basics, specially covering
prosody, a shart glance at the diff erent variants of the German language and specialy at the
differences between Austrian and German is taken (chapter 2). In chapter 3 a short summary
of thefield df speech processing with focus on human-computer interfaces is given. General
principles of speech recognition including major techniques will be covered. A survey on
Language Identification (LID), which reviews common approaches for LID with special
consideration of dialect and accent reagrition will be brought in chapter 4.

Then the experiments trying to distinguish Austrian and German as goken in the Federal
Repubdic of Germany will be discussed. Extraction of FO will be explained and different
methods for parameterization of FO will be introduced in chapter 5. A section is dedicated to
the calculation o statistical features from different signals derived from FO and intensity
(derivative, correation, multiplication)

Chapter 6 covers the evaluation of the features using the t-test for the statistical features and
a simple classfication algorithm for feature combination.

A summary and autlook concludes the thesisin chapter 7.




Some badkground

2. SOME BACKGROUND

2.1 Human speech production

There are three main e ements for human speech production (see Figure 2.3).
a) Power source (lungs),
b) Phonation (larynx),
¢) Articulation (oral and resal cavities).

The source for most speech sounds is air expelled from the lungs through muscular action.

During normal breathing the vocal folds are held apart forming a gap (glottis) to let the air
flow fredy and unlessin case of some pathology, no a little audible sound is created.

glottis

vocal folds

Figure 2.1: Vocal folds in phonation position (from [Putz+1998])

When speaking woiced sounds or singing the vocal folds (see Figure 2.1 and Figure 2.2)
close the gap and higher presaure is built up in the lungs (subglottal presaure). This presaire
-9-




Some badground

forces the vocal folds apart and thus lets the airflow through the glottis into the pharynx.
The glottis forms a bottleneck for the air so the airflow speed is much higher than in the
trachea. According to the Bernoulli law the air presaure between the vocal folds will be
reduced. Consequently, the vocal folds get sucked together again and the cycle starts from
the beginning. This vocal fold vibration is caused by both aerodynamics and the elasticity of
muscle tisaue, and is explained by the myoelastic aerodynamic theory of voicing. The
fundamental frequency of this oscillation, which correspords to the interruptions of the
airflow, is determined by the length and mass of the vocal cords, and is controlled by its
tension. For males, fundamental frequency is at about 80-200Hz, for women at about 150
300Hz. This frequency is not constant, but changes over the time of an utterance. This
frequency pattern is call ed intonation.

Figure 2.2: Movement of the vocal cords (right ) (from [Putz+1998])

When whispering the vocal chords do not oscillate. They are close together, but build a
triangular gap. The air flowing through the glottis causes noise that gives whispering its
typical voiceless sund.

The aooustical signal, generated by the larynx, which isrich in harmonics in case of voicing
and broadband noise for voiceless ®unds, can be modified in the vocal tract by manipulation
of the position o the velum, teeth, tongue, lips and jaw. Depending on the position o these
parts, different resonance frequencies occur. The vocal tract can be seen as afilter for the
source signal from the larynx. Those resonance frequencies are called formants and are
essential for the inteligibility of speech because they do not change with the fundamental
frequency of the glottis sound. For this reason we can recognze the vowel ‘a at every
different pitch.

Non vowel like sounds are produced by narrowing the airflow passage (fricatives: e.g. ‘f, s)
or by blocking the flow altogether and then suddenly releasing it again (plosives: e.g. ‘p,t’).

-10-
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velum

oral cavity epi pharynx
meso pharynx
lanrynx hypo pharynx

Figure 2.3: vocal tract

Combining those possibilities we are able to produce a theoretically infinite number of
distinct sounds, tough in every language only a certain amount of phonemes are used.
Growing older we loose the spontaneous ability to articulate other sounds than those used in

our mother tongue.

2.2 Prosody

From Merriam-Webster's dictionary on line:

Main Entry: pros o dy [' #rosadz], nouwn, plural: —dies

Etymology: Middle English, from Latin prosodia accent of a syllable, from Greek prosOidia
song sung to instrumental music, accent, from pros in addition to + OidE song --
more at PROS-, ODE

Date: 15th century

1: the study o versification; espedally: the systematic study of metrical structure

2: aparticular system, theory, or style of versification

3: therhythmic and intonational aspect of language

This section offers a short introduction to prosody (mostly according to [Neppert+1997 if
not noted dfferently) and its applications to speet processng and specially dialect
identification.

-11-
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Prosody has to do with speech features that are not segmental like phores, its domain of
interpretation is well beyond phore boundaries, concerning words, phrases and sentences.
Therefore, prosodic characteristics are often called supra-segmentals.

Prosody describes the relationships of amplitude, duration and fundamental frequency of
speech. It provides very different cues for syntactic information (segmentation, resolving
ambiguity, conversational structure), emotions, stressand dialed.

[Neppert+1997 stated the following elements as parts of prosody:.

1. Fundamental frequency 6. Tempo

2. Duration 7. Voice quality
3. Intensity 8. Musicality
4. Timbre 9. Emphasis
5. Pauses

2.2.1 Acoustic correlates of prosody

Fundamental Frequency:

Intonation is the variation o the fundamental frequency (FO) in a sentence or more general
utterance. It is the most important part of prosody, because most of the prosodic information
liesin the pitch contour. Therefore, it is the feature, which is most refered to.

In almost every language most utterances have a downward trend, call ed declination after the
first stressed word. It is normally reset at major syntadic boundaries. This effed is asaumed
to be correlated to the dedining air pressurein the lungs.

f A

pt

Figure 2.4: Declination of speech fundamental frequency

Lower FO peaks at the end of a phrase are perceived as grong as higher peaks at the
beginning of a phrase. Thisis becauseinformation liesin relative value (intervals) and slopes
of the contour.

Fundamental Frequency is by far the most examined quality of prosody, possibly because it
is easy to measure compared to ather features mentioned above.
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I ntensity:

Intensity correlates to the loudness of the speech signal. Accented syllables normally have
higher intensity than ahers. Whereas in Germanic languages intensity is important for
placing accents, in Romance languages there are almost no changes in intensity at accents.
Duration:

Duration summarizes effeds as geaking rate, phore and syllable duration and rhythm. It is
an important feature, but difficult to dbtain with automatic approaches.

2.2.2 Role of prosody in speech

The different roles of prosody in speech can be ategorized in three groups (from
[Mixdoff1997).

linguistic (Iexical, syntactic, semantic) | par alinguistic non-linguistic
e sentence mode * speakers * age
» discourse organization (focus) intention, attitude |« gender
*  segmentation (integration, » speakers's badkground
delimitiation) (native language,
» disambiguation dialect, sociolect)
* emotional condtion

Table 2-1: Roles of prosody in speech

The linguistic features refer to the way a message is formally coded and arganized into units
of a certain language. They correspord to the surface structure of the message on a till
rather abstract level. The actual meaning of the message can often nd be decoded without
interpreting the underlying paralinguistic information. The question ‘Are you tired? is
simply a request for being supdied with information on someone's psychdogical and
physiological condtion. If asked with a concerned undertone the message may be: ‘Come
on, you've been working so had, you hare to get yourself some sleg!” With an ironical
undertone, it may mean: ‘ You lazy guy, you' vebeen slegoing dl day and till you' retired!”
Syntax: One basic function o prosody is to segment speech utterances into phrases and
sentences, which help the listener to process peech in smaller units than the whole speech
flow.
It also signals the function o a phrase or sentence such as a question o imperative and also
the syntactic structure as main a subordinate clause. An important role of prosody is solving
ambiguity.

D ‘Vidleicht. Am Montag bel mir. Pal¥ das?"

'Maybe. On Monday, at my place Isthat OK?'
2 ‘Vidleicht am Montag. Bei mir palk das.'

-13-
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'Maybe on Monday. That's passhble for me.'
Here two equal sets of words get a different meaning through prosodic variation, i.e. it is
prosody that dissolves the ambiguity. This is used for speech recogrition and understanding
in the German VERBMOBIL [N6th1997.
Accent - Stress Another fundamental role of prosody is the placement of accents on words
and phrases. Thus a sentence with the same words and different prosody placing the focus on
different words can get completely different meanings.
Word accent can even have lexical importance. In German there are minimal pairs of words
which are segmentally equivalent and only distinguished by the position of their word accent
(eg. ‘ 'umgehen’ (to hande) vs. "um'gehen’ (to avoid) [Mixdorff1997).
Highlighting stressed syllables against a background of unstressed syllables is a primary
function o prosody. Stressed syllables are longer, more intense, and/or have FO patterns that
cause them to stand aut against unstressed syllables.
Speaking style: Intonation is heavily influenced by the speaking style. Main categories are
read, narrative and spontaneous Peech. [Batliner1995] stated that spontaneous and non-
spontaneous geech can be distinguished reasonably well by looking just at prosody.
Emotions: Different emotions and attitudes have big influence in prosody. Research is going
on to deted emoations in speed with prosodic features [Waibel 1994 .
Personality: Prosody is a very personal characteristic [Mersdorf1997, so it is used for
speaker identification [Carey199q. Gender, age-group, health status and sometimes even
vocational cues can be communicated via prosody [Neppert1993.

2.2.3 Language

Although many similar prosodic features can be found in different languages there are till
differences between languages. [ThyméGobbel1996] used 220features to distinguish
English, Spanish, Japanese and Mandarin. These four languages were chosen since they
represent the traditional categories of stresstimed, syllable-timed, mora-timed and tone
languages.

2.2.4 ToBIl-Tones

ToBI (Tones and Break Indices) -Tones is a system for transcribing and labeling the tones of
a language. [Gricet1995 have adopted the original system, which was intended for
American Engish, to German, calling it ToBIG, the Saabriicken system. There are two
main types of events, pitch accents and boundary tones. The system makes use of two tones,
H and L. They can be grouped together into pitch accents and boundaries. What foll ows now
isonly a short introduction with the most important tone combinations.

There are two monotonal pitch accents:

-14-
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H* 'peak accent' an apparent tone target on the accented syllable roughly in the upper
2/3 of the speakers range, often correspondng to a peak in FO.

L* low accent' an apparent tone target on the acented syllable low in the spegker's
range, often correspondngto adipin FO.

There arefour bitonal ones (*' indicates the tone of the accented syllable):

L*+H  'scooped accent' an apparent target low in the range foll owed by a peak high in the
range.

L+H*  'rising peak accent' an apparent low target, followed by a high target on the
accanted syllable.

H+L*  'step-down to low' a preaccentual high a mid target followed by a target on the
accented syllable which is clearly or very near at the bottom of the speakers range.

H+H*  'step-down to mid' a preaccentual high target followed by a target on the accented
syllable which isin the middle of the range.

Boundaries can also occur in four bitonal combinations:

L-H% alow target roughly at the end of the accented word followed by a final riseto a
level around the midd e of the speaker's range.

L-L% an apparent target low in the range. It is not usual to discern two separate dips in
FO contour.

H-L% givesahigh o mid plateau continuing at the same level as the most recent H tone
in the phrase.

H-H% gives a plateau at the same level as the most recent H tone in the phrase, foll owed
by a sharp rise at the end of the phrase.

A major disadvantage of the system is that the results are highly dependent on the person
who labes the corpus.

2.3 Regional variants of German

German is as mentioned above (Section 1.1) a pluricentric language. [Muhr200qJ considers
Standard German as the common part of the three national variants, which are Austrian,
German and Swiss(seeFigure 2.5). Depending on the geographical area within the countries

further regional variants can be observed.

-15-
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Austrian Ger_man
variant of variant of
German German

spedfic
Austrian
spedfic
German
Swiss
variant of
German

spedfic
Swiss

Figure 2.5: National variants of German

Concerning traditional dialed regions, in the Eastern part of Austria mainly the Middle- and
Southern Bavarian is goken, but the very western province Vorarlberg belongs to the
Alemanic dialed. Between those regional variants there are major diff erences.

Additionally, one has to decide between an inner-standard that is goken in a rather close
communication form and an out-standard, which would be used in rather formal
communication and with people speaking a different variant of German. The latter can be
called the Austrian variant of standard German.

There is certain homogeneity because the same media, as television, radio programs and
newspapers influences the whoe Repulic of Austria.

2.3.1 Regional variants and Prosody

[Gibbon1997 mentioned 10 regional standards asociated with the cities Berlin, Hamburg,
Hanover, Cologre, Frankfurt, Stuttgart, Munich, Leipzig, and Vienna for Austrian German,
and Zurich for Swiss German sharing fundamentally the same prosodic properties with
characteristic differences in the details. He states: 'In general, Southern dialeds are
asociated with a right-displaced prominence peak; that is, the syllable perceived as being
accated has low pitch, and a pitch rise, often followed by a peak, occurs on one of the
following syllables (ToBI L*+H). In the standard pronunciation, the peak tends to occur on
the accented syllable itself, though in some speech styles, such as telli ng stories to chil dren,
the right-displaced peak rhythm occurs.'

[Auer+1999 analyzed diff erences between the local dialects of Hamburg and Berlin by
using ratural discourses. They stated some prosodic patterns that made utterances typical for
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a speaker of the city. This research is very context related and focuses on a few seleded
utterances.

[Schaeffler1999 performed perceptional experiments to find out whether there are prosodic
cues in the speech signal of German daleds that are strong enough to identify the origin o
the speaker in German. The speakers were classfied in 7 dalect regions. Austrian and
Bavarian speakers belonged to one didled class The utterances were delexicalized with a
bandpassfilter between 70Hz and 270Hz. 10 speakers from each region were seleded and
the stimuli were 40seconds of spontaneous mondogue. Recogntion rates for
Bavarian/Austrian were well above chance level, but not clear. As a general statement it can
be said, that there is a salient diff erence between northern and southern regions that could be
used for dialed recognition by prosodic features.

2.4 Differences between Austrian and German

The listed differences do not claim completeness but should gve an overview of the
disgmilarity between Austrian and German.

2.4.1 Lexical and grammatical differences

Most lexical differences between Austrian and German apply to cooking (Erdapfe -
Kartoffel, Paradeiser - Tomate, Karfiol - BlumenkoH, Faschiertes - Hackfleisch, Kren -
Mehrrettich, ...) and pulic administration (Stellung - Musterung, Anrainer — Anlieger, ...).
Other diff erences are different gender for the same word such as ‘der Akt (m.) — die Akte
(f.)" or different forming of plural ‘die Erlasse — die Erlassg’. Another difference would be
the different form of past perfed: ‘ich bin gelegen —ich habe gelegen’. As mentioned above
it is not so easy to specify atypical Austrian variant, so some of the examples would also be
valid in southern Germany [Weissl999. Specific Austrian variants are coded in the
‘Osterreichisches Worterbuch’ [OWB1979

2.4.2 Pronunciation differences

[Takahashi1999 investigated regional variants of German in Germany, Austria and
Switzerland. He used two sources for his gudy. He started by using standard pronunciation
dictionaries and their covering of regional variants. He then analyzed his own test speakers.
To dotain Standard German, i.e. a correct pronunciation for the regional variant, he choose
newsreaders and teachers of German as a foreign language.

In the following, some of the spedfic pronunciation features of the Standard German o
Austria in contrast to the Standard German o Germany are documented (see also
[Muhr200Q).

-17-



Some badground

Vocals:
 Thelong gpen vocal [ ] becomes aclosed [e ], such as ‘erklarte’, ‘Auszhlung,
"ordnungsgemal? .
e The shot open vocals [1,2,Y] are pronounced closed [i,e,¥], as in ‘Mexiko',
‘Ende’, ‘wird’, ‘dirfte’.
* Articlesare xtremely shortened (e.g.” die Amerikaner’ [damesi ka ne]).
» Thesuffix —er is pronounced extremely short [e] (‘linker, seiner’)
Consonants:
* kand gbecome palatalized in front of avocal or an| (‘klar, keine, Gletscher’)
» Thefinal syllable—igist pronounced [T k] (e.g. ‘gleichzeitig, vorlaufig) .
e The voiced [z] becomes a voiceless lenis [z] or a voiceless [s] (eg. ‘sat’ [Z],
‘Samalia’ [s]).
* A voiceless[t] at the end o aword o in a weak syllable becomes a voicelesslenis
[d] (asin‘Zeit im Bild, sollte’).
e Thereis no glottal stop in front of word and syllable boundaries (e.g. ‘als einer’
[al zerne],‘gabes [ va bes]).

2.4.3 Prosodic differences

Concerning prosodic differences there is still much to explore, but maybe one of the most
obvious disgmilarities is related to word accent. There is quite a list of words where the
Austrian version has the accent on a diff erent syllable as the German version, asin Kaffee A:
[ka fe ] vs. G [ kafe] (coffed or Platin A: [Fla ti n] vs. G: [ rla ti n]

(platinum)

2.5 Summary

We have discussed human speech production consisting of power source (lungs), phanation
(larynx) and articulation (oral and resal cavities).

We then explored the term prosody giving spedal consideration to its acoustic correlates and
itsrolein speech. A short paragraph was dedicated to prosody and language.

The problem of national and regional variants of German was presented, focusing on the
differences between Standard Austrian and Standard German. Those differences, though
only briefly covered, show that appropriate modeling d Austrian pronunciation could help to
improve speech recognition performance [Baun+200(.

-18-
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3. SPEECH PROCESSING

Speech processing has become a broad field o research including many specific aress,
which are sometimes closely related. This chapter gives an introduction to the main areas of
speech processing. Most of the material is taken from [O’ Shaughnessy/200Q if nat noted
differently. The bodk is an excellent introduction to speech processing, provides extensive
references, and therefore can be used for more in-depth studies.

Thefollowing topics are covered:

» Speech Analysis »  Spesker Recogrition
*  Speech Synthesis » Language Recognition
e Automatic Speech Recognition e Accent/Didled Rewgnition

3.1 Speech Analysis

Speech Analysis is maybe the technical foundation for all other disciplines. It invaves a
transformation of a speech signal s(n) into another signal, a set of signals or a set of
parameters, with the objedive of simplification and data reduction.

Speech analysis tries to extract relevant features while suppressng redundancy or
irrdlevance. Another goal of speech analysis is the finding of efficient representation of
speech. Since speech analysis cannot be covered on a few pages, only methods that were
actually used during this research are mentioned.

There are a few main assumptions about speech signals. First, it is usually assumed that the
signal properties change relatively slow with time. This allows examination o speech with
short-time windows presuming the parameters remain constant for the duration o the
window. Usually speech sound is assumed to stay constant for at least 10ms. This opens the
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subject of windowing signal. But this is hot to be explored here. Badkground can befound in
[Oppenheim+1995.

In the time-domain, analysis transforms a speech signal into a set of parameter signals,
which usually vary much more slowly in time than the original signal.

The Zero-crosdng rate (ZCR) provides very simple analysis in the time domain for spectral
measures. In a signal s(n) such as geech, a zero-crosdng occurs when s(n)=0, i.e, the
waveform crosses thetime axis. For narrowband signals (e.g. sinusoids), ZCR is an accurate
spectral measure.

The ZCR can be defined as

T[s(n)] = 0.5sgn6(m) ~sgnis(n - 1)),
wherethe algebraic sign o s(n) is

=L e

The ZCR can help in voicing decisions. Most energy in voiced speech is at low frequency,
since the spedrum of voiced glottal excitation decays at about —12 dB/Oct. In unvdced
sounds, broadband noise excitation excites mostly higher frequencies, due to effectively
shorter vocal tracts. Whil e speech is not a narrow-band signal (and thus the sinusoid example
does not hold), the ZCR corrdates well with the average frequency of major energy
concentration. Thus, high and low ZCR correspond to unvoiced and voiced speech,
respectively.

Shat-time energy or amplitude can help segment speed into smaller phoretic units, which
can e.g. approximately correspondto syllables. The short-time energy is defined as

E[k] = ::Z_tx[m]zw[n —m|

Shart-time autocorr el ation gives information about energy and periodicity of the sigral. It is
used for FO determination and Linear Prediction.

00

R, [k] = z s[mw{n - m]s[m-kjwn-m+K]

Frequency domain parameters provide the most useful parameters for speech processing.
The basic model of speet production is a noisy or periodic waveform that excites a vocal
tract filter. This corresponds well to separate spectral models for the excitation and for the
vocal tract (seeFigure 3.1).
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Figure 3.1: source-filter speech model

Human hearing appears to pay much more attention to spectral aspects of speech than to
phase or timing aspects. Thus, spectral speech analysis generally receives much more
attention.

Shat-Time (discrete) Fourier transform (STFT) applies the discrete Fourier transform (DFT)

to successve windows:

ok = :Z‘:s[m]e— izl — ]

The choice of N (window length) is crucial for STFT. Low values for N give poor frequency
resolution, but goad time resolution. Large N, on the other hand, gives poor time resolution
and good frequency resolution. As an gptical speech analysis todl, the spectrogram provides
athree dimensional representation o speech utterances using the STFT. For speech analysis
there are two main representations. Wideband analysis displays individual pitch periods as
vertical striations corresponding to the large amplitude at vocal cords closure. It smoothes
the harmonic amplitudes under each formant acrossa range of 300Hz, displaying a band of
darkness for each formant. The center of each band is a good estimate for the formant
frequency.

Narrowband spectrograms display separate harmonics instead of pitch periods.

They can help to analyze FO and vocal tract excitation (see Figure 3.2).
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Figure 3.2: Wideband and narrowband spectrograms of a sentence

Linear Predictive Coding (LPC) is one of the most powerful speech analysis techniques, and
one of the most useful methods for encoding good quality speech at a low bit rate. It
provides accurate estimates of speech parameters, andis relatively efficient for computation.
The underlying assumption d LPC is a speech modd as in Figure 3.1, which is a source-
filter model with an excitation signal of either an impulse train a random noise. This
excitation signal is then filtered by the vocal tract transfer function.

S(2) _ G

E(2) 1- i akz"‘

H(2) =

The predicted signal is calculated using an FIR filter:

7[n] = Z o, x[n —K]
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Figure 3.3: Block diagram for linear prediction

Linear predictive analysis is a technique aimed at finding the set of prediction coefficients
{ay} that minimize the mean-squared prediction error between a signal x[n] and a predicted

signal based on alinear combination of past samples; that is
() =B o]

where ([J represents averaging over a finite range of values of n. Usually, the

autocorrelation method is used to find the optimum predictor coefficients {o,}. Small
segments of speech (usually approx. 10ms) are used to ensure that the signal doesn’t change
significantly during analysis.

If the speech signal x[n] isfiltered by an inverse or predictor filter (the inverse of an all-pole

V(2)
Al2) =1- gakz‘k
the output e(n) is an error signal
)= o] -5ln] = ] 5 Xl -] = e

This sgnal (called residual) as input will synthesizethe original signal perfedly.

W[n] = Za x[n -]+ Gdn]

From f[n] it can be determined whether the signal is voice or unwoiced and, if voiced, the
fundamental frequency. This is how basic LPC encodes the residual. This encoding,
however, causes quality loss because the predicted filter is never ideal.

Problems arise when the ecitation is not purely voice or unwoiced, but something in
between. Various efforts have been made to code the error signal. For example, CELP (Code
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Excited Linear Prediction) is a version where the residual signal is matched to entries in a
codebook and the entries are used for coding.

Determining the fundamental frequency (FO0) is important in many speech applications. It is
the primary acoustic aue to intonation and stress in speed.. Most low-rate voice coders
require accurate FO estimation for good reconstructed speech. FO petterns are useful in
speaker recogrition and synthesis. Time domain FO detectors have three components. a
preprocessor (to filter and simplify the signal via data reduction), a basic FO extractor (to
locate pitch epochs in the waveform), and a postprocessor (to locate erors).
Frequency-domain methods for FO estimation invave crreation, maximum likelihoad, and
other spectral techniques where speech is examined over a short-termwindow. In Section 5.1
an auto-correlation FO estimation method will be discussed.

3.2 Speech synthesis

Text-to-speech synthesis (TTS) is the automatic generation of a speech signal, starting from
atextual (or conceptual) input and using previously analyzed dgital speech data.

Two main steps are required, first, the linguistic analysis which transfers a text to a rather
phore orientated description including prosodic information and second, the actual speech
wave generation.

The text analysis consists of different stages (see Figure 3.4). The preprocessor does the
normalization and segmentation o the text. Numbers, special symbds, abbreviations,
acronyms, control characters, etc. have to be handed. Punctuation is examined as a cue for
sentence end detection.
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Figure 3.4: Text analysis for speech synthesis (from [Dutoit1997])

The morphological analyzer decomposes al words into their eementary units
(Morphemes) to be ableto have a dictionary at areasonable size.

The syntactic analysis helps to identify the part-of-speech o every word and can then
structure the text or sentence to be able to extract prosodic information.

Semantic information would help to solve most of the aiurrent problems of text
interpretation, but so far and probably for the near future there is no efficient tool to handie
this task.

The Letter-to-sound module then uses the aready dbtained information for the
phorgtization d the text.

The most difficult part is to generate proper prosody for unrestricted text. This is one of the
main reasons that synthetic speech still doesn’t sound natural.

Speech-wave production methods can be broadly divided into two categories. — those
which predominantly model the speed signal and those which predominantly concatenate
prerecorded speech signal.

There are two prominent members of modeling speech — ‘articulatory synthesizers' and
‘formant synthesizers'. Both generate a synthetic speech signal purely from parametric
information, which drive an abstract model of production.

-25-



Speed processing

Articulatory synthesizers attempt to produce a synthetic speech by modeing the
characteristics of the vocal tract and the speech articulators. There is gill not enough
information about the exact mechanism of the speech process partly because there are no
appropriate models of the speech production available. Research is going on, but no
commercial use is made so far, because excessve computational power is necessary for real
time applications.

For mant synthesis looks at the acoustical properties of speech and tries to model them. The
underlying model is most of the times a source-filter-approach (Figure 3.1).

The second approach is to encode pieces of natural speech and put them together as needed.
The advantage is that no complicated model of the speech signal is necessary and with the
possbility of advanced techniques for modifying the signal and cheap computer memory
concatenative synthesis is now the common approach for commercial TTS Systems.

3.3 Automatic Speech Recognition

Automatic speech recognition (ASR) has been much more difficult to achieve than TTS.
When trying to let a computer recognize human speech several problems arise. Among them
are variability (time, speaker, etc.), vocabulary, continuous speech, etc.

In theory, ASR could be as smple as a large dictionary where each entry is a digitized stored
waveform labeled with atext pronunciation. Given an input utterance, the system would only
search the dictionary for the closest match and find the correspondng text from a lookup
table. Whereas this approach works for speaker dependent discrete utterance, small
vocabulary application, for more complex systems this procedure is not feasible due to the
immense complexity. Different applications yield very different complexity of the ASR
system.

Discrete utterance | Conneded speed1 | Continuos geet

Spesker \

Dependent - Degreeo
Multi complexitly
Speaker

—

Speaker
I ndependent

Table 3-1: Complexity of different recognition tasks (From [Morgan+1991])

The many sources of variability in human speech are amajor reason for this complexity. All
recognizer are influenced by environmental variability due to background and channel noise
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(spedally for phore applications) Speaker-dependent recognizers have the least variability,
but still every word is not pronounced the same all the time (Intra-speaker variabili ty). It still
takes training time to adapt the system to a specific speaker. On the other hand, speaker-
independent systems have to cope with inter-speaker variability. Here many factors have to
be taken into account such as gender, age, accent or dialect, style of speaking and diff erent
anatomy of the vocal tract. Those sources of variability are the key problems of ASR.

Excursion on Problems of Dialect and Accent in ASR

With the example of German, the different influences of dialectal coloring on ASR will be
considered. Dialedal differences are a major problem in ASR. Depending on the region
realization d phonemes and hence, pronunciation of words differ a lot. Not only austic
deviations, but also lexical differences make it necessary to include many dialectal regions
into an ASR system. [K6nig198]] described several dialectal subdvisions and boundaries.
Foreign accents may rise the problem that phoremes of the target language do not exist in
the original language, so people might not be able to pronounce those phonemes corredly

To ke the complexity, which is rising with utterance length, at a low level, segmenting
speech into smaller units such as words gyllables or phoresis an important task. However, it
is hard to find reliable cues for this task. Sudden large changes in speech spedrum or
amplitude help to estimate unit boundaries. For example, silence can be between words, but
it can also be before plosives or at glottal stops. Correct endpoint detedion helps to improve
error rates and keep dovn computational costs.

For performance evaluation, error rates (e.g. the percentage of words not correctly
recognized o those spoken) or accuracy (the percentage of corredly identified words) are
used. Cost, speed and thelikelihoad o aninput being rejeded are other important factors.
Speaker dependent isolated word reagrition with a small vocabulary often reaches accuracy
of >9%%, but may fall to 90-95% for speaker independent conrected speech applications.
One crucial tod for speech recognition is the use of databases of speech labded with textual
transcriptions as training data and as evaluation todls. For German, the Bavarian Archive for
Speech Signals (BAS) [Schie+1999 provides different corpora including RGV1 (A
Database for Regional Variants of German) [Burger+1998 and the SpeechDat projed which
includes an Austrian corpus [Baum+200Q.

The crucia point of speech reagrition is the problem of pattern recogrition. An utterance
has to be compared with reference data obtained through training. This data can be divided
into two main approaches. One can view ASR from ether a cogritive vew, which is a
knowledge based o expert system, or an information theoretic view. The first one tries to
model through finding relationships between speed signals and their correspondng text
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messages and postulating phoretic rules to explain the phenomena. It is, however, very
difficult to model the complexity of speech in a knowledge-based system. The information
theoretic view tries to describe speech using information derived through statistic analysis. It
uses datistical models that maximize the likelihood o choosing the correct symbols
corresponding to the input.

3.3.1 A General Model for Speech Recognition

A general speech recogrition model is illustrated in Figure 3.5. The major components of
this mode include:
a) Preprocessng to namalizethe speedt signal
b) Parameterization and feature extraction to identify the key components of a
parametric representation and eli minating redundant information.
¢) Time alignment and pattern matching algorithm for performing word
detedion
d) Language processng to select alinguistically valid word string

speech
Pre-
—»| processng
7 Word Text output
l B hypotheses | |
Feature Time dignment T
extraction | and Phonetic Legal text
Pattern matching dictionary —® sequences
fr‘ari)rrllicr)\” ey reference Word Linguistic
9 template verifying constraints

Figure 3.5: General speech recognition model

a) Preprocessng
First, the speech utterances have to be normalized for example with automatic gain control
(AGC) to reduce the influence of different recording conditions (for example through
different distance to the microphore) or transmisson channels. It has to be applied with long
time constants to preserve prosodic information in amplitude changes. Normalization of
temporal variations is not dore at this level.
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b) Parametric representation and Feature extraction
The parameterization o the speech signal has the goal of efficient data reduction without
losing information relevant for ASR.

¢) Pattern matching and time alignment
At the heart of ASR lies the measurement of similarity between two windowed speech
patterns, i.e. the representation of a frame of the input speech and a frame from a set of
reference patterns or models (obtained during training). The comparison a evaluation
involves finding the best match in terms of a distance between templates or deciding which
reference model is the most likely.

d) Linguistic Evaluation
Most speech corresponds to texts, which follow linguistic rules (e.g. lexical, syntactic,
semantic constrains). Exploiting theserulesis crucial for ASR performance.

3.3.2 Parametric representation and Feature extraction

Usually successive frames of 10ms distance (see Chapter 3.1 ) are parameterized. and a
source-filter model as in Figure 3.1 is used for the parameterization. But very often the
excitation parameters such as the voicing decision, amplitude and pitch areignored in ASR,
though recent research tries to employ those prosodic parameters to aid recognition at a
linguistic level (Figure 3.6). [N6Gth+1997 use a cmbination df prosodic information such as
fundamental frequency and energy, and a word hypothesis generator following a phoreme
recognizer to gain positions of accents and sentence boundaries. [Strom1995 uses only
Energy and FO of a speech signal to place the accents and sentence boundaries. Both are part
of VERBMOBIL [Walster199 a multidisciplinary research projed by several research
ingtitutions in Germany. Its goal is to develop a tod for machine translation of spoken
language from German into English and Japanese.
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Figure 3.6: Incorporation of prosody for speech recognition (from [N6th1997])

The spedral envelope provides the primary ASR parameters. The most common ASR
parameters are mel-based cepstral coefficients, but LPC analysis, energies from a channel
vocoder, reduced forms of DFT and zero-crossng rates in bandpass channels are other
examples. They all attempt to capture in about 10 parameters enough spectral information to
identify spoken phores.

Now, these parameters can be reduced to features in arder to deaease redundancies of the
parameters. Such features may be subdivided into acoustic and phoretic features, depending
of the degree of data reduction. Phonetic features have adiscrete range and assgn sound to
linguistic categories, e.g. voiced o fricative, they represent major data reduction thus leading
toward a phonemic decision. Acoustic features (e.g. formants, FO) represent an intermediate
step between parameters and phoretic features.

Features are fewer in number than parameters and therefore potentially more efficient for
ASR; they are speech spedfic andrequire clasdfication that can be eroneous.

3.3.3 Pattern matching and time alignment

Each parametric (or feature) pattern for a frame of speech can be viewed as an N-
dimensional vedor, having N parameters/frame. If the parameters are well chosen, then
separate regions can be establi shed in the N-space for each segment.
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The similarity between two patterns is often expressed via adistance, measuring how close
the patterns are in N-space. Another popular method is datistical, where the reference
models gore probability density functions (PDF) and similarity is judged in terms of the
likelihoad o the test pattern for each PDF. To handle multiframe utterances (i.e. al practical
cases), local (frame) distance measures typicaly sum up to yield a global (utterance)
distance. The reference pattern yielding the smallest distance or highest probability is usually
chosen for the ASR output.

Euclidean and Mahdanabis distances:

In ASR invalving templates, each unknown test utterance is converted to an N-parameter test
template, to be compared with reference templates to find the closest match. The similarity
of two templates is inversdy proportional to the distance in N-space between points
corresponding to the templates. The most common distance measure is the Euclidean
distance (or L2-norm):

d, (%9 = Y= (=9 = [ (x =)’

Another common speech distance in the Mahalanobis or covariance-weighted dstance,
d(%,9) ={(X = 9WE-),

where W is a positive-definite matrix that alows different weighting for individual

parameters depending on their utili ty in identifying the speech segments in N-space.

Despite the advantages of the Mahalanobis distance in weighing properly, ASR often uses
the Euclidean distance or a LPC distance, because in is difficult to reliably estimate W from
limited training data. Moreover the latter two distances require only N multiplications for an
N-dimensional parameter vector vs. N> multiplications with the Mahal anobis distance.
Sochastic simil arity measures:

The Mahalanobis distance has origins in statistical dedsion theory. If each utterance of a
word represents a point in N-space, the many possible pronunciations of that word describe a
multivariate PDF in N-space. Asauming ASR among equally likely words and maximum
likelihoad as the decision criterion, Bayes' rule spedfies choosing the word whose PDF is
most likely to match the test utterance. Because of the difficulty of estimating accurate PDFs
from a small amount of training data, many systems asaume a parametric form of PDF, e.g.
Gaussan, which can be simply and fully described by a mean vedor p and a covariance
matrix W. Since ASR parameters often have unimodal distributions resembling Gaussans,
the assumption can be reasonable.

The distance measures in the previous paragraph are general and can be used with many sets
of parameters such as LPC or Cepstral parameters.
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Dynamic time warping

The dynamic time warping (DTW) procedure combines alignment and distance computation
in one dynamic programming procedure. DTW finds an gotimal path through a network of
posshilities in comparing two multiframe templates, using the Bell man gptimality principle.
DWT dligns a test template as a whde with each reference template by finding a time
warping that minimizes the total distance measure, which sums the individual frame
distances in the template.

R(m) ' 1

» N
1 T

Figure 3.7: Dynamic time warping from [O’Shaugnessy2000]

3.3.4 Networks for speech recognition

Networks in ASR employ a rather statistical representation of acustic information. Let us
have isolated word recogrition (IWR) as an example: model each word with a succession of
phoretic states i (corresponding roughly to phores), linked by transitions fedfied by
likelihoads &;. This probability of a phonetic segment j following segment i governs the
transition between the states representing those two sounds. Consider pass as an example
word, where states for [] closure (sil ence), [»] burst, [ - &] aspiration [&], and [s] might be
chosen via marse segmentation o other technique. To allow for the chance that the [~] burst
and/or aspiration may be missing the a; may vary considerably, they typically correspondto
the frequency of actual transitionsin thetraining data.

For IWR each input utterance is evaluated by each word network, to find the network most
likely to have generated the word. Instead o searching a DTW spacefor a path o minimal
distance, each network is searched for the path maximizing the product of al transition
probabili ties between states corresponding to the test utterance.
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Popular approaches are Hidden Markov Models [Rabiner1989 or Neural Networks
[Morgan1991]].

Hidden Markov Models

Rabiner presents an excell ent introduction to Hidden Markov Models (HMMSs) in his tutorial
[Rabiner1989.

The key assumption o the statistical approach to speech recogrition is that speech can be
modeled statistically during an automatic process By examining an ensemble of training
speech data, a probabili stic that characterizes the entire ensemble is created. The resulting
model, which represents each speech unit (word a sub wnit), is more powerful and general
than a template.

In the HMM formalism, speech is assumed to be a two-stage probabilistic process In the
first part of the two-stage process speech is modeled as a sequence of transitions though
states. The states are not themselves directly observable (hidden), but are manifest by
observations, or features. Second, the observations in any state are not deterministic, but are
specified by a probabilistic density function over the space of features. The power and
flexibility of the statistical approach comes from this two-stage modeli ng procedure.

Figure 3.8: 3-state Hidden Markov Model

As downin Figure 3.8, aHMM is characterized by the foll owing:
1. N, the number of states in the model. We denote the individual states as S={S,, S,,...,
Sy}, andthe statetimet as q.
2. M, the number of distinct observations per state. We denote the individual symbols as V
={ViVy ..., Vu}.
3. The state transition probability distribution AQ{ & ;} where
;= P[qu1=S|q:=§]  1<i,j<N
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For the special case where any state can reach any other statein a single step, we have a;
> 0 for al i,j. This is called an ergodc HMM. In ASR left-right HMMs are very

common becuse time depended properties can be modeled very wdll.

Only state transitions from left to right are allowed (Figure 3.9).

Figure 3.9: Left-fright HMM

4. The observation symbol probability distribution in state j, B={b(k)}, where

B(K)=P[viatt|g=S] 1<j<N
1<k<M

5. Theinitial state distribution 1= {15}, Wwhere

n=P[q=S] I<j<N

Given appropriate values of N, M, A, B and 11, the HMM can be used as a generator to gve

an dbservation sequence:

O= O]_Oz... OT

For convenience usually a compact notation for aHMM is used:

A=(A,B,

Given a HMM there are threebasic problems which have to be solved should the model be

useful in real-world applications:

Problem 1:

Problem 2:

Problem 3:

Given the observation sequence O= 0; O, ... O, and a model A = (A, B, 1),
how do we efficiently compute P(OJA), the probability of the observation
sequence, given the model. — The Baum-Welch forward-backward agorithm
may be used to find the probalility P(O|M,) of generating the observation
sequence O from the model My

Given the observation sequence O= O, O, ... O, and a modd A, how do we
choose a @rresponding state sequence Q=0, O, ..., Gr Which is optimal in
some meaningful sense (i.e, best ‘explains the observations)? - There is a
well know Viterbi dynamic programning sol ution.

How do we adjust the model parameters A =(A, B, 1) to maximize P(O]\) -
The model parameters are found ly an iterative procedure known as Baum-
Welch re-estimation. An initial HMM is assumed, and the Baum-Welch
forward-backward agorithm is carried ou to find the state occupaion

probakilities as a function of time.
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HMMs can be used to model phones, words or larger speech units. A phone HMM might use
three states to represent to, in arder, an initial transition spectrum from a prior phone, a
spectrum from the phone's presumed steady state, and a final transition spectrum to a
following phore.

3.3.5 Language modeling

Language models (LM) appear on a lexical (or phondactic), a syntactic and possbly on a
semantic level.

Since the phoremic composition of words in most languages is highly restricted (e.g., the
sequences /tz/ and /sd/ are illegal in English syllables), a word level language modd is
applied. Normally given a history of prior (recognized) words in an utterance, the number of
words P that an ASR must consider as possbly coming next is much smaller that the
vocabulary size V. P is cdled the perplexity of a language modd. LMs are stochastic
descriptions of text, usualy invaving likelihoods of local sequences of N consecutive words
in training texts.

n-gram Modds

Typicaly, N-gram models estimate the likelihoad o each word, given the context of the
preceding N-1 words, e.g. bigram models use statistics of word pairs and trigrams model
word triplets. Unigrams are simply prior likelihoaods for each word, independent of context.
These probahilities are determined by analysis of large amounts of text, and are incorporated
into a Markov language model.

3.3.6 Summary

We have covered some basic principles of speech recogrition. Even though only some topics
were covered, the complexity of thetask is obvious.

Most current ASR uses gatistical pattern recognition, applying general models as dructures
to incorporate knowledge about speech in terms of reference models. The parameters of the
models are estimated during a training procedure, in which speakers utter words or
sentences, which may be repeated during actual ASR.

Alternative approaches such as cogntive methods, which incorporate knowledge on human
speech production and perception, deaeasing hardware (eg. memory) cost will improve
future ASR performance.
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3.4 Speaker Recognition

There are two main Speaker recognition appli cations:

* Veifying a persons identity prior to admisson to a secure fadlity or to a

transaction over the telephore

» Association a person with avoice, e.g. in audio-conferences
Other applications could include identification d the persons gender, emations in speech
[Waibel1994, accent or dialed of a speaker and the language being spoken. The latter will
be covered extensively in Chapter 4.
There are two main areas in speaker recognition, first automatic speaker verification (ASV)
and second automatic speaker identification (ASI).? ASV only has to evaluate the test
pattern with one reference model and a binary decision whether the test speech matches the
model of the claimant has to be made. ASl, on the other hand, requires choosing which o N
known voices best matches a test voice.
When focusing on the identity of a spesker there are three sources of variation among
speakers: differences in vocal cords and vocal tract shape, differences in speaking style
(including variations in both target positions for phoremes and dynamic aspects of
coarticulation such as geaking rate), and differences in what speakers choose to say.
Two classes of error occur: false acceptance when the system incorrectly accepts an
impostor during ASV or identifies awrong person during ASI, and false rejedions, when the
systemregeds atrue claimant in ASV or incorrectly finds no match in ASI.
Analysis techniques are similar for speech and speaker recognition since both involve pattern
recognition of speech signals, but in speaker recogrition only one dedsion is necessary
compared to ASR where decisions are made for every phore or word. Templates or models
are not focused on text, but on speakers. The considered features include prosodic properties,
LPC and cepstral coefficients.
Main approaches are either utilizing features using long time averages (eg. means and
variances of FO, amplitude or LPC coefficients) or comparing spedfic sound with a test
template of eg. phores. Two aher categories are text dependent or text independent

solutions.

2 ASV/I wil | be used for discussions applying both to ASV and ASI
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3.4.1 Prosodic cues for speaker identification

[Carey+1994 have utilized prosodic features based on @tch and energy contour for speaker
identification. Gender was identified with 98% accuracy using the mean pitch parameter
alone. Consequently, mean pitch was also used for identification d unknovn speakers.
Additionally they used the first four statistics, mean, variance, skewness kurtosis, of the
pitch and energy and their first two derivatives. The mean and variance of the length of the
voiced speech segments were added to these. Those features were tested to draw the seven
best ones for classfication using Linear Discriminant Analysis.

They then combined the prosodic system with a system using spectral envelope parameters
employing a filterbank with 19 filters. The log power outputs were transformed into twelve
cepstral coefficients and twelve delta cepstral coefficients at a frame rate of 10 ms. Hidden
Markov Models were used for clasdfication. The spedral envelope yielded better results
than the prosodic features. However, the latter were much more robust to signal degradation
than the spectral envelope.

[Waibel1994 used two sets of features to recogrize the emotional state of a speaker. The
first set consists of 7 gobal statistics of the pitch signal such as mean, standard deviation,
minimum, maximum, range, slope and speaking rate.

The pitch contour for the second feature set was smoothed using piecewise cubic splines.
The derived features were statistics related to rhythm, the smoothed pitch signal and its
derivative, individual voiced parts and slopes.
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4. LANGUAGE IDENTIFICATION

Language Identification (LID) can be seen as a subset of the field of speaker recognition,
because it gains personal information about the speaker. A more spedalized application is
the problem of dialed or accent identification.

Applications for LID are dialog systems, espedally in multilingual countries or multili ngual
tranglation systems. Instead o trying to recognize a speech utterance in all possble language
and choosing the most likely output it is computationally more dficient to first identify the
language spoken and then to apply the right ASR system.

Another application would be for emergency telephore services to aid gperators if an LID
front-end can route a call to the appropriate person.

4.1 Useful Cues for LID

In comparison to ASR where most of the information lies in small portions of the speech, for
LID these units are not enough and larger segments have to be considered.
[Muthusamy+1994 list several sources of information for language identification:

» Acoustic Phonetics: Phoretic inventories differ from language to language. Even when
languages have identical phonres, the frequencies of occurrence of phores differ across
languages.

e Prosodics: Languages vary in terms of the duration of phones, speech rate and the
intonation (pitch contour). Tonal languages (i.e. languages in which the intonation o a
word determines its meaning) such as Mandarin and Vietnamese have very different
intonation characteristics than stresslanguages auch as English a German.

e Phonotactics: Phomotactics refers to the rules that govern the combinations of the
different phores in a language. There is a wide variance in phonadtactic rules across
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languages. For example the phore cluster /st/ is very common in the Dravidian language
Tamil, whereas it is not alegal cluster in English.

e Vocabulary: Conceptually the most important diff erence between languages is that they
use different sets of words — that is, their vocabularies differ. Thus, a non-native speaker
of English is likely to use the phoremic inventory, prosodic patterns and even
(approximately) the phonotactics of her/his native language, but will be judged to speak
Englishif the vocabulary used is that of English

4.2 Multi-language speech corpora

A major reason for research progress in the last 10years was the availability of multi-
language speech corpora [Muthusamy+1997 to capture the many sources of variability
within and across languages. These include variability due to speaker diff erences (e.g. age,
gender, dialect), microphones, telephore handsets, communication lines, background noise
and the language being spoken. It is aso important that the corpus contains a wide variety of
speech from each speaker, ranging from fixed-vocabulary utterances to retural, continuous
speech. The availability of such a crpus in the public domain enables researchers to study
languages and to develop, evaluate and compare multi-language recogrition algorithms.

The OGl Multi-language Telephone Speech Corpus was designed specifically for language
ID research. It consists of spontaneous and fixed-vocabulary utterances in 11 languages:
English, Farsi, French, German, Hindi, Japanese, Korean, Mandarin, Spanish, Tamil and
Viethamese.

4.3 Human performance

Human performance was <gudied by [Muthusamy+1994a]. One eperiment with
mondingual English speakers was dore with 10 languages. After some training, the people
were able to identify languages with accuracy ratings from 39% (Korean) to 86% (German
and French) using just 6-second excerpts. English scored 100%. An additional experiment
was performed where some subjects were able to speak more than one language and there
were native speakers of every language tested. Overall performance increased and listeners
who knew more languages tended to perform better. The subjects noted to use the foll owing
cues for the recogrition task:
e Specia phores or phone-combinations were linked to certain languages.

» East Asian languages were asociated with special intonation (tones).
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However, it is dill not clear which cues humans use to identify or distinguish unknavn

languages.

4.4 Common Approaches

[Muthusamy+1994 described several approaches to LID. Much progress has been made in
ASR using stochastic models such as Hidden Markov Models (HMM) or Artificial Neural
Networks (NN). These approaches are being used in recent LID aswdll.

The esiest approach is to model an entire language by a sing e stochastic model, such as an
ergodic HMM. Because a singe HMM cannot model the complexity of a language, this
approach has not been very succesdul.

The basic idea of the system by [Lamel+1994 is similar to the above approach. It isto train
not just one but a set of large phore-based ergodic HMMs for each language and to identify
the language as that associated with the model set having the highest acoustic likelihoad.
Using the 10-language OGI telephore speech corpus, the overall identification rate is 59.2%
with 10s of signal. They note that this technique has also been successully applied to gender
and speaker identification and has other possble applications guch as dialect identification.
The most popular approach to LID is to look at the phoreme inventory of the languages.
Some phoremes do only exist in a certain language while others have subtle differences in
realizations in languages. There are also dffering frequencies of occurrence of the same
phoremes.

4.4.1 Single phone recognizer followed by language

modeling (PRLM)

One way would be to use a phore recognizer which can be either language independent
[Hazent+1997, [Corredor-Ardoy+1997 or for one specific language [Zissmannl99q,
[Caseiro+1999. The language independent implementation uses a phore inventory that
covers all the phones of the language to be identified, whereas for the language specific
approach a phone remgrizer for a specific language, for example English is used for all
speech utterances.
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Figure 4.1: Phone Recognizer followed by language modeling

The phore remgnizer offers a phone string that includes either all phonemes of the
languages or just the phores the recognizer is trained with. This phore string is then fed into
language specific models. Those can be trained for language | by running training speech for
language | into the phore recognizer and computing a model for the statistics of the phores
and phone sequences that are produced by the recognizer. N-grams can be used to model the
language. [Zissmann199§ counted the occurrence of n-grams, which are subsequences of n
symbols. Training was performed by accumulating a set of n-gram histograms, one per
language, under the assumption that different languages will have different n-gram
histograms. They then used interpolated n-gram language models to approximate the n-gram
distribution as the weighted sum of the probahilities of the n-gram, the (n-1)-gram, etc. Then
the log-likelihoad for every language was calculated and the decision was made with a
maximum likelihoad clasdfier.

[Hazen+1997 employed the concept as hown in Figure 4.1 but additionally incorporated
the fundamental frequency and segment duration. They then used three different models for
the language likelihoads. The languag model is very similar to the implementation by
[Zissmann1994, as described above. The acoustic model acoounts for the different acoustic
realizations of the phonetic d ements that may occur acrosslanguages.

Language N
sy

Acoustic
Model

Figure 4.2: Language Model
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The prosodic model captures the differences that can occur in prosodic structures of different
languages due to the stressor tone patterns created by variations in the phore durations and
FO cortour. For each frame, a fundamental frequency and a voicing probability are
estimated. Then the logarithm is taken for all voice frames and the mean is subtracted.
Additionally a delta FO is calculated. Since no well-developed techniques for automatical
capturing and understanding o word- and sentence- level prosodic information were
available, their prosodic model only captured simple statistical information about the
fundamental frequency and segment duration information o an utterance. They used two
separate models for fundamental frequency and segment duration, assuuming statistical
independence.

They incorporated all models into the system by optimizing weighting factors for different
utterance lengths. As the length o the test utterance increases, the weights of the acoustic,
duration and prosodic models generally deaease. This effectively gives the language model
more weight for longer utterances.

Evaluation by the NIST1994° test yielded the foll owing results with 11 languages of the OGI
Multi-Language telephore speech corpus:

10 s utterances 45 s utterances
Set of models Accuracy Accuracy
Complete system 65,3% 78,1%
Language model 62,7% 77,5%
Acoustic model 49,0% 53,5%
Duration model 3.7 44,4%
FO mode! 12,4% 20,9%

Table 4-1: Performance of complete system and individual components

Performance for very short utterances (~ 1 s) was dominated by the acoustic model. The FO-
model generally yielded a rather poor peformance. For increased performance
[Hazen+1997 suggested models that are more sophisticated.

4.4.2 Parallel phone recognizers followed by a language

model

Parallel phone recogrizers followed by a language model (PRLM) have either a phane
recognizer for each language to be identified or any number of phore recognizers of
arbitrary languages. [Zissman199q used phore recognizers for English, Japanese and

3 A standardized test by the US National Institute of Standards and Technology
-42-




Language ldentificaion

Spanish to identify Farsi, French and Tamil. A phoneme string for N languages is calculated
and then modeled with each o the language models. Computationally this approach is of
course much more intensive than the previous solution. [Navrétil1999 employed a similar
model but like [Hazen+1997 he additionally used an acoustic model to take into account
different pronunciations of the same phore in dfferent languages and a prosodic model

which uses ssgment duration.

Language N

Phonetic Language 2 s

— Recognition Langjage 1T
o Language N
waveform M e .
Pre- Phonetic Language 2 Clasdfication
> processing > Recognition Language 1 >

Language N

Phonetic Language 2

— Recognition Language 1

model

Figure 4.3: Parallel Phoneme Recognizer followed by Language modeling

[Zissmann199§ introduced another model, the parallel phone reagrition (PPR) that alows
the phone recognizer to use the language-specific phorotactic constraints during the Viterbi
decoding processrather than applying those constraints after phone recognition is complete,
the lost likely phone sequence identified during recogrition is optimal with resped to some
combination o both the acoustics and phonadtactics. The disadvantage of this g/stem is that it
needs phonetically labeled speech for every language to be recognized.

Classificaion

waveform

Figure 4.4: Parallel Phone Recognizer (PPR)

[Zissmann1996] also performed experiments using gender dependent acoustic models for
phore recognition, including duration tagging, where average phore durations were
compared with tested phores. Both improved the performance of the above systems.
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4.4.3 Prosodic and Duration Approaches

As mentioned above [Hazen+1997 stated, that the prosodic model didn’'t contribute much to
the overall performance of their system.
[Muthusamy1994 considered more complex prosodic models, which take into account the
pitch variation within and across the different segments marked by a broad-category
classfier. He also extracted features indicative of speech rate and syllabic timing. Again,
these prosodic features were found to be marginally useful.
[Foil1984 examined both formant and prosodic feaure vectors, finding that formant
features were generally superior.
[Itahashi+1999 used two dfferent methods of parameterizing FO-contours and combined it
with statistical analysis. Their approach was to approximate the fundamental frequency by a
set of paygonal lines

Y, =a,(t—-t,)+b, k=12 ..,K
where g, is the slope of the line segment k, by is the intercept, and t,; is the boundary
between the adjacent line segment. The parameters a, and h, were determined so as to
minimize the mean square eror between y(t) and Fy(t).
Fo patterns show hat-like shapes suggesting that an exporential function is expeded to be
more suitable for approximation:

t
y(t) = a?e e’ +bt+c

Their statistical features were related to FO and speech power (standard deviation, skewness
and kurtosis) additionall y correlation coefficients of FO and speech power were used. For the
parameterization, statistical features were calculated as well. Additionally to the FO-contour
12 mel cepstral, 12 ddta mel cepstral coefficients and a delta power were calculated
(referred to as MCC). This method is based on an ergodc HMM using MCC as ssgmental
information. One HMM was used for each language. For training and evaluationthe OGI-TS
corpus (10 languages) [Muthusamy1999 was used. Recognition rates were 25.5% / 28.0%
for the FO-line/ exponential modd and 55.5% / 56% for a 32 / 64 state HMM M CC model.
The best combined result gave 68.5% accuracy. A suitable weighting factor for the influence
of FO and MCC is important for optimal recognition rates. Performance of MCC HMMs is
far better than the FO-contour, but as an addtional feature, the latter is gill improving
performance.

[Thymé-Gobbel+1996 presented the most promising approach. They performed syllable
segmentation and extracted pitch and amplitude contour information on a syllable-by-
syllable basis and included a statistical module, which computes inter-syllable relationships
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in the pitch and amplitude information. They used 224 individual features sich as moving
averages, deltas, standard deviation, and correlation of measures in the foll owing classes:

« Pitch Contour (shape of pitch contour ona syllable)

* Differential Pitch (pitch differences between syllables)

» Size (distance between syllables and syllable duration)

 Differential size (differenced distance between syllables and syllable duration)

» Amplitude (shape of amplitude contour ona syllable)

« Differential Amplitude (amplitude differences between syllables)

* Rhythm (low frequency FFT of amplitude envelope, syllables per second within

breath group)
Phrase Location (initial/mid/final in breath group; relative phrase position based on
syllable distance rations)

Pair-wise language discrimination was performed between English, Spanish, Japanese and
Mandarin. These languages represent the traditional categories of stresstimed, syllable-
timed, mora-timed and tone language.
The most prominent feature is the pitch (and to a lesser extend deltaPitch). Combinations of
location and pitch and delta pitch seem to be most important for LID. The weakest
distinctions involve amplitude and differential amplitude, suggesting that using amplitude
featuresisavery poor LID strategy.
The best result was Mandarin versus Spanish using dtch features and phrase location scoring
86% recogrition rate.
[Cummins+1999 used AFO and AAmplitude-envelope modulation for discriminating among
languages. They do not compute a featural representation o the speech signal in advance;
instead, the variables were presented as a time series to a novel reaurrent neural network. It
employed a Long Short-Term Memory model, to overcome the shartcomings of recurrent
neural networks when including temporal information.
[Thymé-Gobbel+1996 chose their four languages, because they include stress, syllable-,
mora-timed and tone languages. This research included German, because it is considered to
have a prosodic system very similar to English and it thus allows testing the expedation of
maximal confusability for prosodically similar languages.
Pair-wise discrimination based on AFO and/or AEnv yielded the foll owing mean results (50%

is chance performance, standard deviation in brackets):
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% correct A FO and AEnv

German Spanish Japanese Mandarin
English 55.7 (2.3) 538(5.0) |64.9(1.2) 63.2 (1.8)
German - 527(1.3) [67.3(2.1) 68.7 (2.6)
Spanish - - 67.3(L9) 727 (2.7)
Japanese |- - - 60.8 (2.0)

Table 4-2: Results of Neural Nets Prosodic Arrroach usiny AFQ and AEnv

It is evident that the network is quite successful at discriminating among typologically
distinct languages that is any pair from Mandarin, Japanese and either English, German o
Spanish. However, performance is much worse within the group of the three Indo-European
languages. Perhaps aurprisingly, Spanish is not easily distinguished from English and
German, despite the rhythmic difference.

% correct AFO
German Spanish Japanese Mandarin
Endlish 538(21) |543(35) |659(14) 63.3(0.8)
German - 542(21) |[73.3(1.6) 717 (2.1)
Spanish - - 731(22) 68.0(1.3)
Japanese |- - - 52.0(2.2)

Table 4-3: Results of Neural Nets Prosodic Arrroach usingy AFQ

Given only FO as input, performance in most discrimination tasks is as good o better asin
the two-input model. In particular, performance on comparisons involving any one of the
Indo-European languages and either Mandarin o Japanese is dill reliably abowve chance,
often showing dlight, though hardly significant improvement.

% correct AEnv
German Spanish Japanese Mandarin
Engish  [514(25) |600(25) |517(26) |59.8(2.5)
Geman |- 539 (21) |59.2(20) [60.7(4.3)
Spanish |- - 607 (1.6) |521(1.6)
Japanese |- - - 60.4 (1.4)

Table 4-4: Results of Neural Nets Prosodic Approach usiny AEnv

A point to note is the improvement shown in discriminating Spanish and English when AEnv
alone is used as input. It is likely that the poorer performance in the 2-input task can be
attributed to the harder task of both learning to dscriminate based on AEnv and
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simultaneously learning to ignore the apparently irrdevant AFO input. It is surprising that the
Germarn/Spanish task does nat show a similar improvement in the singleinput case.

To sum up, FO is the most useful prosodic discriminant as noted by [ Thymé-Gobbel+1994,
but discimination performance is highly dependent on language specific factors. It is
interesting that English and German are not being discriminated by neither of all three
approaches.

4.5 Accent Identification?

There have been very few attempts to identify dialeds or accents. The task differs from
language identification by the fact that all speakers are speaking the same target language.
However, the speakers with foreign accents are expeded to import some of the acoustic and
phorological features from their first languages into the speech production process So
differences can be acoustic and phonotactic due to the phoreme substitutions and
approximations.

[Kumpf+199€ described a system for automatic foreign accent identification for Australian
English speech. The clasdfier is designed to process continuous geech and to dscriminate
between native Australian English speakers and two migrant speaker groups with foreign
accants, whosefirst languages are L ebanese Arabic (LA) and South Vietnamese (SA).

The system is a Parald Phoneme Recognition as described in Section 4.4.2 and
[Zissman199§. The speech signal is represented by the observation segquence of feature
vedors O={ 0y, 0,, ..., 0} With T being the number of frames in the utterance The feature
vedor consisted of 12 MFCC coefficients, 12 delta MFCC coefficients, log energy and delta
log energy. For each accent dependent recmgrizer a phoreme HMM set A, (3 state l€ft to
right topology) and a language model (phoreme bigram model) L, are trained on the speech
of acent A. During testing a Viterbi decoder finds for each recogrnizer the most likely state
sequence representing the speech utterance incorporating the HMM and language model and
asdgns the log likelihood scores Sy = log PLOJA s, Lalto the proposed phoreme sequences.
The maximum likelihoad criterion is then applied to choose the recognizer with the highest
likelihoad score as the most probable to represent the accent of the test utterance

A= argmgx{log P(OA,. LA>} A O{AUE, LA, SV}

4 Accent will be referred to people who have adifferent native language than the spoken one; dialect will be seen

asaregiond variant of one language.
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Figure 4.5: Accent classification system [Kumpf+1996]

This g/stem reached an average clasdfication rate for three accents of up to 84.2% correct.

[Hansen+199] presented a system for foreign accent identification of American English.
They suggested that normal speech production consists of a sequence of movements in some
articulatory feature space from one source generator to anather. Actual speech production
consists of a ‘neutral’ speech feature production path which must be traversed to produce a

givenword o utterance.

'\

\ “THIRTY"
® NEUTRAL
ay © WITHACCENT

ARTICULATORY SPACE SPEECH MODEL PARAMETER SPACE

Figure 4.6: Sample Source Generator paths for American English under neutral and foreign accent conditions as

projected an articulatory feature space (from [Hansen1995])

They claim that one devel ops a speaking style whil e acquiring language skill up to the age of
16, which consists of phoneme production, articulation, tongue movement and other
physiological phenomena related to the vocal tract. In general a foreign speaker preserves
this speaking style while learning a second-language, and therefore substitutes phoremes
from his native language when he encounters a new phoreme in the second language. For
accanted speech this path through the feature space is somewhat deviated from the normal
path.

In arder to characterize the change in speech production due to accent in an articulatory
space, a series of features was considered: Frame power, zero-crossing rate, LP refledion
coefficients, autocorrelation lags, log-area-ratios, line-spectral pair frequencies, LP and FFT
cepstrum coefficients, Fo, formants location and bandwidths. Though there are significant
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variations in pitch for the different accent, the most distinct features for clasgfication were
on phoremic level.

For an unknown gpen speech sequence for Neutral American English, German, Turkish and
Chinese accent arecogrition rate of 81,5% was achieved.

[Teixeira+1994 proposed a threestage recogrition system, in which the first stage deddes
about the speaker’s gender, the second stage clasdfies the speaker’s accent, and the final
stage uses recogrizer systems correspondng to the dedsions made in the previous gages.
Concerning the accent identification stage, they used an HMM technique similar to
[Lamel+1994. Global score for discrimination of 6 European language accents of English is
65.4%.

4.6 Summary

Language ldentification including Accent and Dialed ldentification was covered in this
chapter. Human performance and potential cues for LID were discussed. A multi-language
corpus, which enhances comparability of research, was presented.

Then common approaches to LID were covered, such as a single phone recogrizer foll owed
by language modeling, a parallel phone recognizer followed by a language model and a
paralld phone recognizer. Then some specific prosodic approaches were presented. The
chapter concluded by introducing work about Accent identification.
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5. FEATURE EXTRACTION

The Data used for this research is provided by Forschungszentrum Tedekommunikation
Wien® (ftw). The database GeveAT is taken from the SpeechDat-AT, a telephone speech
database for Austrian German [Baum200(J. The German speskers are taken from the
SpeechDat-AT database as well, since the SpeechDat criteria dlow 5% non-native speakers.
The speech file format is 8hit, 8kHz, A-law speed fil es, uncompressed. 17 speakers from
each Austria and Germany were provided. For each of the speakers 10 sentences were
recorded. Every sentence was goken by at least both an Austrian and a German speaker.
Because some of the speakers were not optimal for the task of discerning the origin o the
speaker the data set was reduced to 10 speakers (7 male/ 3 female).

The first task was to extract prosodically relevant parameters. As seen above, fundamental
frequency and intensity contour are the most obvious features. In ader to extract the
intensity contour the a-law files were converted to wav-files. Duration features are much
harder to dotain, because in this case segmentation information such as phoneme or syllable
length are needed. Since these features had not been provided, duration features were not
tested.

5.1 Fundamental Frequency Tracking

Extracting the fundamental frequency of a speech signal can be achieved in severa ways.
For this task, Praat phoretics tools® were used. This is a toolbox for speech research,
including features as gectrogram, LPC, Cepstral-analysis, PSOLA, formant and pitch

SVienna Telecommunication Research Center

® Praat can be obtained from: http://www.fon.hum.uva.nl/praat/
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tracking. The pitch-tracking algorithm performs acoustic periodicity detedion based on an
accurate auto-correlation method, as described in [Boersmal993.

This method is more accurate, noise-resistant and robust than methods based on cepstrum or
combs, or the original auto-correation methods. Its key point is the fact that if one wants to
estimate a signal’s short-term auto-correlation function on the basis of a windoved signal,
the auto-corrdation function of the windowed signal has to be divided by the auto-
correlation function o the window.

5.1.1 Theoretical Background

Ideally, the best candidate for the acoustic pitch period can be found using the position of the
maximum of the auto-correlation function o the sound, and the degree of periodicity from
therelative height of this maximum. However, the problem is, that sampling and windowing
cause inaccuracies concerning the position and height of the maximum.

Theauto-correlation of atime signal x(t) asafunction of thelag 1 is defined as:
rx(r)EJ’X(t)X(t +71)dt

If there is a maximum outside O and the height of the harmonic strength r(Tn) is large
enough the signal is periodic and in consequence there ists alag T, called the period. The
fundamental frequency is then defined as Fo=1/T,.

The short-term auto-correlation is estimated from a short windowed segment of the signal.
This gives estimates F(t) for the local fundamental frequency and Ry(t) for the harmonic
strength.

If there are strong harmonic components in the signal, the highest maximum of the auto-
correlation of the windowed signal is rather at alag that corresponds to the first formant than
to the fundamental frequency. Therefore, the pitch estimate from the auto-correlation would
be too high. A solution to this problem is to compute the normalized auto-correation o the
window function and to divide the auto-correlation of the signal by the auto-corrdation o
the window (See Figure 5.1).
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Figure 5.1: Pitch tracking using corrected autocorrelation (from [Boersmal993])

The corrected auto-correlation is:

(1)

r (7)

For every frame, a aertain number of candidates (peaks in the auto-correlation function) are

r() =

stored. A post-procesgng algorithm, considering cost for voicing threshdd, octave jumps,
voiced/unvoiced changes, etc., seeks the best path through the candidates.

Thefollowing arguments had to be applied:

Time step: the measurement interval, in seconds.

Minimum pitch: candidates below this frequency will not be recruited. This parameter
determines the length of the analysis window.

The default arguments for the best path algorithm were used as suggested by praat. For male
speakers the minimum frequency was 75Hz and the maximum was 220Hz. For female
speakers the expected fundamental frequency was between 100Hz and 350Hz. For all
samples atime step of 10 ms was used.

After the pitch tracking a smoothing algorithm was applied with either 8 Hz or 1 Hz
bandwidth.
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5.1.2 Pitch-post-processing

Human pitch perception is rather logarithmical. Consequently, the logarithm of the
fundamental frequency is taken and transformed to MIDI-Numbers (A2=110Hz=MIDI#36).
This explains why peaks at the end o the downward trend (declination) of an utterance (see
Figure 2.4) are perceived as drongas the higher peaks at the beginning.

For statistical analysis, the usual downward trend of an utterance is removed by subtraction
of the 1% order regression line. This is also to reduce speaker dependencies, spedally
concerning gender.

5.2 Parametric Description of the FO-contour

The following pages describe attempts to model the Fy contour using a parametric
description. All of the models are originated in speech synthesis and they are used for
modeli ng the pitch contour for synthesized speech.

5.2.1 TILT-Analysis

The Tilt-Analysis’ is a phoretic model of intonation parametric representation of a pitch
contour using three parameters for intonational events. duration, amplitude and tilt (for the
shape) [Taylor200Q. Intonational events can be either pitch accents (denoted a) or boundary
tones (b).

The Tilt-Analysis is based on the ris¢/fall/conredion (RFC) model. In this model, presented
by [Taylor1995, each intonational event is characterized by four parameters: rise amplit ude,
rise duration, fall amplitude and fall duration. If an event has only a rise component, its fall
amplitude and duration are set to 0. Likewise, when an accent only has afall. The sections of
contour between events are called conrections (denoted ¢) and are also described by
amplitude and duration.

In [Taylor200Q it is shown, that the RFC mechanism is not ideal in that the RFC parameters
for each contour are not as easy to interpret and manipulate as one might like. Additionally,
the parameters are highly corrdated and therefore it is possble to reduce the set of
parameters to three by transforming the four RFC parameters into three Tilt parameters,
namely duration, amplitude andtilt itsef.

A single parameter can be used to model the shape of the event. This tilt value is calculated
as.

" Tilt is part of the Edinburgh Speech Tods Library, which is provided by the Centre for Speech Technology,
University of Edinburgh. It can be obtained from http://www.cstr.ed.ac.uk/projects/speech_tods.html.
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|Aise| _|Afall . D Dfa||
ZQAise| +|Afall ) 2(Drise + Dfall )

The amplitude parameter is the size of the FO excursion of the event:

Aevent = |Aise| + |Afall
Thedurationisthe sum of therise and fall duration:

D = Drise + Dfall

event —

rise

tilt =

FO pasitionis the FO distance from the baseline (usually 0 Hz) to the middle of the event.

Time paosition is where the event is located in time.
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Figure 5.2: Examples of 5 events with varying values of tilt

Using Tilt, the problem arise that a label file for theintonational eventsis needed. Thisfileis

normally created by hand, which cannot be consistently dore by different labelers. | have not

succealed in finding an automatic labeling tod.

5.2.2 Intofit

Intofit® is, like Tilt, a parametric description of FO-contours, originally to be used for speech

synthesis. It is a maximum-based model, asauming the FO-maxima to be the most important

points of the intonation contour [Heuft+1995. Each FO-contour is parameterized describing

8 Intofit was developed at the ‘ Institut fir Kommunikationsforschung und Phonetik’ at the University of Bonn,

Germany and can be obtained from http://www.ikp.uni-bonn.de/~tpad/intofit.html_.
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only its maxima: for each maximum, approximated by cos® functions, four parameters are
given. First, the maximum is located precisely in time, relative to the onset of the accented
vowel assigned to it. This distanceis call ed delay.

The second parameter is, the height of the maximum (amplit ude) is described as a percentage
value between top and basdine. The third and forth parameter describe the stegpness of the
contours preceding (Ieft slope) and following (right slope) the maximum.

delay delay
(positive) (negative) .

topline (speaker
dependent; fixed)

left
slope y AMPLITUDE
=1
AMPLITUDE
=0,75

l baseline (speaker

\ /4 dependent; fixed)
begin stressed begin stressed

vowel vowel

Figure 5.3: Intofit parameters (from [Heuft+1995])

The intonational events for Intofit were abtained asauming all accents were represented by
pitch maxima down to a certain threshold. This is linguistically not correct. For this reason
the delay parameter is aways st to zero, but the FO-contour could be approximated quite
correctly (Figure 5.4).

In Table 5-1 the Algorithm for finding the Intofit parameters is described. For the slope
parameters an gotimization by minimizing mean squared errors was performed. A weighing
factor emphasizes the distance close to the maximum, because deviations close to the
minimum are perceptional lessrelevant.

Finding the maximum close to the accented vocal
Calculation o distance between vocal onset and position of maximum
Determination o relative amplitude, related to top and basdine

A WD PR

Calculation o optimal slope parameter between previous minimum and current
maximum.
5. Calculation o optimal slope parameter between current maximum and the foll owing

minimum.

Table 5-1: Calculation of Intofit parameter (from [Portele+1995])

It is to mention though, that quite often the approximation algarithm didn’t find a correct
fitting. Most of the time, the peaks of the fitted-contour were below the original peaks.
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Figure 5.4: Original and (Into-)fitted FO-contour (log-domain)

Criginally, Intofit uses linear frequency, but because speech is perceived rather
logarithmically, a logarithmical input was used as well. Then for every speaker one mean
intofit feature set was calculated (see Figure 5.5).
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X
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O
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rising slope

Figure 5.5: Log- Intofit-features: amplitude vs. falling slope
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5.2.3 The Fujisaki - Model

The Fujisaki-model ([Fujisakil983 and [Mixdorff1997) aims at modeling the generation
process of FO and explaining the physical and physiological properties behind it. It views a
FO contour as the filtered sum of two components: word level accent commands and phrase-
level utterance commands. Thus the Fy contour, Fy(t), of a sentence can be expressed by

INnF,(t)=InF_, + Z Api[(;pi (t-Ty)—G,(t-T, )]

J Equation 5-1
+ Z Aaj [Gaj (t _Tli ) - Gaj (t _T2i )]
IE
where
Gaj (t) =min{[1-(1+ Bjt)e_ﬁ‘t], y}u(t) Equation 5-2
and
Gpi ®= aite_‘“u(t) Equation 5-3

u(t) = unit step function

respectively indicate the step response function o the wrrespondng control mechanism to
the phrase and accent commands. The a;'s and 3;'s are expected to be fairly constant within
a sentence, or among utterances of an individual speaker. | and J are the humber of phrase
and accent commands, T and T4 denote the onset and end, respectively, of the ith phrase
command, while Ty and T, denote the onset and end, respedively of the jth accent
command. In the absence of pauses within a spoken sentence, the offset times T for all
phrase commands are assumed to be the same for al i’s within an utterance. On the other
hand, the accent commands are constrained not to overlap each ather.

A PHRASE COMMAND

G, (t
p( ) PHRASE
Tos PHRASE COMPONENT In Foft)
. T CONTROL | —
Tos Tor l . MECHANISM
71
GLOTTAL
OSCILLATION —>
\‘/ MECHANISM
FUNDAMENTAL
A, FREQUENCY
[ ACCENT COMMAND G,(t)
ACCENT
= 1, _lcontroL ||
Tu TaTe T Tia Ty MECHANISM | ACCENT
COMPONENT

Figure 5.6: Block diagram of the Fujisaki-model
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To extract the features the program ‘autofuji’ by Hangorg Mixdorff was used
[Mixdorff1999. Fujisaki-model parameters are estimated from an ESPSwaves-based FO
contour® in a multi-step procedure, consisting of a quadratic spline stylization, a cmponent
separation by filtering followed by command initialization. Then the initial parameter
configuration is optimized in a threepass hill-climb. In the latter part of the procedure,
parameters for accent and phrase components are first optimized separately, then further
optimized together using the spline contour as the target and ultimately fine-tuned with a
weighted version o the extracted contour asthe target (See Figure 5.7).

15 T :
original synthetic

signal

°°°7ﬂe

10

phrase &

—

frequency [HZz]

low frequency component
component
50 -
high frequency accent
componen component

° / .

|
0.5 1 1.5 2 2.5 3 3.
time [s]

Figure 5.7: Components of Fujisaki Model

— s Va

Several possible ranges for a and B were evaluated and finally a=2 and =20 yielded the
best results. [Mixdorff1983 already suggested those values for German.

This leaves two variables Aa and Ap as features for the identification o the different dialed
groups. Since there can be several accent and phrase components per utterance,
representative values for each sentence were calculated. Best results offered a median
computation so that there is one median Aa and Ap value for every sentence (Figure 5.8).

For some sentences, the Ap output of the autofuji-program was not calculated, which is
obviously wrong. Additionally some abnormal program terminations have occurred. Those
errors may be caused by the misgng vdcing degree, which was not avail able. However, the

¥ Since ESPS-waves was not available, the missing degree of voicing parameter was substituted with a binary

value. This might decrease the performance ahieved.
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involved datasets were still used, because Aa was accurately calculated. This was taken care
of by setting the median value of theinvalid Ap components to zero.

Fujifit parameters
0.35

o
o o
0.3 o Q
o
o
© o
o 00 o
0.25 o Q 5 o
o ;© 1o
o
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o)
0.2 Qe Q
. & :
5} o) o 8
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o 5o o
© o o ,© ° @™
0.15 O o}
(232 [®) (e
% o %
o
o o o
o) o
0.1 0 Q
o
o
0.05 o o AUStrian ...
German
0
0 0.1 0.2 03 0.4 05 06 0.7 0.8

Ap

Figure 5.8: Fujisaki Parameters Ap vs. Aa

5.2.4 LPC-Coefficients

This approach is aso rooted in intonation modeling for speech synthesis. [Mersdorf1999

proposed a system where LPC-Coefficients for speaker dependent modeling of intonation

were used. The LPC-Intonation model consists of the following stages:

e FO-postpracesgng: Outliners are removed

e Interpdation: For the LPC analysis a continuous, derivable representation o the FO
contour is recommended. They suggest a cubical spline interpdation assuming a ‘virtual
FO' in unvoiced segments (see Figure 5.9). The interpdation is motivated by the
asumption that temporary switching into unvadced excitation only interrupts a
continuous geaker’ sintonational gesture [Mersdorf1997].

FoA

virtual Fy

: : >
jen@ s jed @ s ¢

Figure 5.9: Example for vitual FO (jenes, jedes); from [Mersdorf1997]
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« Analysis: The analysis consists of an 8" order LPC of the interpolated contour over the
whole sentence. For the whoe speech material a singe set of individual filter
coefficients can be built by computing the arithmetical mean value for each coefficient.

e Approximation of command excitation and (re)synthesis are then used to generate an
excitation signal for the resynthesis of a synthetic intonation contour. This can then be
applied to synthetic speech using PSOLA or similar techniques.

InFigure5.10it is overt that there are quite significant differences in the impulse response of

different speakers using 8" order LPC coefficients.

0.7 T

A

06 // N\ i
\

/"/ \
/ P
/] —\)

0.5

-0.2
0

Figure 5.10: Speaker individual Impulse responses (Austrian speakers)

These are mean impulse responses for individual speakers. The idea proposed now is that
significant differences between Austrian and German speakers can be expeded. Instead of
averaging over sing e speakers, mean filter parameters are calculated for all Austrian and all
German speakers.
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impuls resonse of mean LPC coefficients
0.6 T T T T

——— Austrian
-——— German

0.1 1 1 L 1

Figure 5.11: Average Austrian and German impulse response

Figure5.11 shows that the diff erences are far less $gnificant than with single speakers.
The frequency response (Figure 5.12) does not show any diff erences ether.

25 T T T T T T T T T

Austrian
L] N German |1

-20 ! ! ! ! ! ! ! ! !

0 5 10 15 20 25 30 35 40 45 50
Frequency

Figure 5.12: Frequency response of average LPC-Coefficients

Further analysis proved that L PC-Coefficients provide no useful features for the discerning
of Austrian and German.
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5.2.5 Peaks and Intervals

The most simple form of obtaining a data reduced representation o the pitch contour is to
find minima and maxima. This was dore in the log-domain; therefore intervals are given in
semitones.

semitones

time(ms)
Figure 5.13: minima & maxima of FO-contour

The histogram of the mean intervals between a maximum and a minimum suggests a
possble distinctive feature (Figure 5.14.).

30 T T T T T T T T

Austria
German

251

201

15F

10F

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
semitone

Figure 5.14: Histogram of mean Intervals
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5.3 Intensity

Additionally, an intensity contour was calculated in MatLab with the following algorithm
(RMS):
[ ] 1 n+80 )

X[n|=.— X Equation 5-4
The values of the sound wave are squared and then summed over a window length o 160
samples (20ms). The hopsize used was 10 ms (80samples).
From the linear intensity contour the logarithm was taken {20*log10(X[n])}. For
normalization the maximum of each file was st to 80dB. It was then stored as a Praat
Intensity-Tier file

5.4 Statistical Features

Very little useful information is avail able from intonation research, which could lead to more

knowledge-based features. Statistical features might be a possble approach.

Percentiles (P10, 25, 50, 75, 90), standard deviation, skewness kurtosis were calculated for

thefollowing signals:

* FO-Contour: The logarithm was taken, converted to MIDI-numbers and to detrend the
data (see Section 2.2.1) thefirst regresgon line was subtracted.

* Deta FO-Contour: It is sid that a lot of prosodic information lies in slopes and
intervals (see Sedion 2.2.1), so delta-FO could provide some useful information.

* Intensity-Contour (framesizes=16020ms): Intensity is sid not to be very useful
acoording to [Thymé-Gobbel+199€, but there is gill some information encoded in the
intensity contour. Because of background naise the file is much longer than the actual
speech. This fact was taken into account by asauming that the actual speech-length is
from the first to the last voiced frame. This segment was used to analyze the intensity-
contour.

* Ddta Intensity-Contour (framesizes=160/20ms): The length was calculated as above
and the difference was computed.

* AutoCorrelation(F0): Auto-corrdation provides spedral information about the
FO contour. This function was computed on the logarithmical and detrended FO-contour.

* AutoCorrelation(I ntensity): The auto-corrdation function was computed on the
logarithmical and detrended | ntensity-contour
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e CrosLoarr elation(FO,I ntensity  (lin/log)): Crosscorrelation shows dependencies
between FO and intensity contour. It is expected that Austrian and German show
different patterns in interaction between FO and intensity.

e FO*Intensity-Contour (lin/log): This was computed as just an addtional feature that
might show dependencies between FO and intensity.

e Voiced Ratio: One widely adknowledged difference between German and Austrian
pronunciation is the voicing of consonants [see Section 2.4.2 ]. Austrians rarely use

voiced consonants such as [z, b, d,...], but substitute them with their voiceless

counterpart. Even though this is not a dearly prosodic feature, it is assumed that in
German speech the voiced rate must be higher than in Austrian utterances. Two different
approaches were made. First the Praat voicing decision was utilized by computing the
ratio o the number of voiced frames to the number of all frames of an uterance. An
aternative way was the computation of the zero-crossng rate (see Sedion 3.1)

5.5 Summary

This chapter explored how to get features, which are relevant for classfication o Austrian
and German using prosody. Two aooustical charaderistics are eplored, fundamental
frequency and intensity. Two different parameterizations of fundamental frequency are
applied, Infofit and Fujisaki. Both dff er interesting results.

For both, FO and intensity several signals auch as ddta, correation, etc are calculated and
then statistically evaluated, using the t-test.

Processing time of the most important calculations is siown in Table 5-2. The system used
was an Intel Pentium 11 — 500MHz with 192MB RAM. Values arein % of real-time. It has
to be noted, that the statistical features from Section 5.4 are calculated in MatLab, which is
rather slow. Optimizations could deaease the processing time.

processng time
Task
% of real-time

Pitch Tracking 33%
Intofit 10%
Fuji saki 40%
Statistical Features <5%
(for each signal)

Table 5-2:Processing time
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See asummary of the feature ectraction in Figure 5.15.

— Tilt-Analysis
amplitude
— Intofit rise-slope
Analysis p
pod fall-slope
signal
(fs=8kHz)
a-law coded
| | LPC- LPC-
Y Analysis Coefficients
mean
—1 Intervals
Intervals
logarithm/ 1t derivative[—
— pitch-tracker— FO-Contour — detrend Y B
correlation
v Standard
Multiplication— Deviation
correlation
-
— Intensit Intensity-
y Contour —
1st derivative
Auto- L
correlation
.| Zero-
Crossing

Figure 5.15: Summary of feature extraction
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6. EVALUATION

After extracting features from the signal, there has to be made a decision which features are
used for discerning the language groups, to achieve the best performance. Not all features
mentioned in the previous chapter can improve the classgfication task.

6.1 Classification algorithm

There are many algorithms to classfy signals around, but since this would have exceeded the
scope of thisthesis | only used one simple classfier, keeping in mind d course, that a better-
suited algorithm would have lead to increased performance. For comparison a standard
MatLab Multi-Layer-Perceptronis used for the best results.

The main purpose of a clasdfier isto decide which classa specific data sample with a certain
feature vector belongs to (see Figure 6.1).

SA
o class1
3 N
5 o dass2
8
2
class3
*
v
\_/

feaure 1

Figure 6.1: principle of classification from [Korl1999]
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The algarithm used was to split the whole range of data into sedions of equal size or equal
percentiles. For each sedion the number of samples of a class (Austrian/German) from the
training data determined which classthe sedion belonged to. Then the test was performed on
anather set of data (Figure 6.2). Samples that lie in the according area are counted as corred
recognition. The classdistribution has only limited impact on the class boundaries, because
only squares are used. Placing the boundaries in a way that data distribution is considered
could lead to better performance.

Figure 6.2: a) Determine class boundaries using training data b) Applying test data

6.2 Feature Evaluation

6.2.1 T-Test on all Statistical Features

Since there are many statistical features, the t-test [Hartungl99§ is a possble way to
determine which d those are worth taking a further look at. To find out which o the features
calculated contain information that can be used to determine whether two samples from a
normal distribution (in this case Austrian and German) could have the same mean when the
standard deviations are unknovn bu assumed equal. The t-test assumes normal distribution
of the data, which we suppose, appliesto aur feature set. The calculated value significanceis
the probability that the observed value of T could be as large or even larger by chance under
the null hypothesis that the mean o x is equal to the mean of y. Small values of significance
cast doubt on the validity of the null hypothesis. That indicates that the mean could be
different.

The calculating the t-test yielded the foll owing significance level:
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Features | P10 P25 Median | P75 P90 StdDev | Skew Kurtosis
01|FO 0.0422 |0.0997 [0.2261 |0.0837 |0.3661 |0.2218 |0.7473 |0.0696
02| Int 0.8797 |0.1796 [0.8024 |0.8392 |0.2732 [0.7824 |0.6258 |0.4663
03 |Intl 0.5747 |0.1464 |0.6763 [0.4276 |0.1432 |0.4587 |0.3186 |0.0488
04 | DeltaFO | 0.0487 |0.0046 |0.5412 |0.0192 |0.0092 |0.1267 |0.5029 |0.7360
05| Ddtalnt [0.9231 [0.6649 |0.6735 |0.8878 |0.8246 |0.3762 |0.7891 [0.4114
06 | Detalntl | 0.6134 [0.7776 |0.0427 |0.0926 |0.7281 |0.7301 |0.9748 |[0.1905
07 | Acf FO 0.1510 (0.1709 |0.1346 (0.3012 |0.7132 |0.3015 |0.0767 |0.1534
08 | Acf Int 0.6989 |0.3665 [0.9128 |0.2909 |0.6047 |[0.7951 |0.5501 |0.7564
09 | Xcorr 0.9688 [0.7286 |0.4313 (0.1742 |0.6728 |0.8012 |0.5330 |0.0105
10| Xcorr log [0.9932 (05527 |0.3145 |0.1626 |0.6220 |0.7150 |0.6061 |0.0057
11 [ Xmult 0.3412 |0.4502 [0.1605 |0.2567 |0.9533 [0.4289 |(0.3278 |0.5973
12 [ Xmultlin {0.9020 |0.5197 |0.8719 [0.5901 |0.8462 |0.6223 |0.9055 |0.6260
13| Xmultlog [ 0.1729 |0.6506 |0.1331 [0.3574 |0.5946 |0.2370 |0.6695 |0.8594
14| ZeroXing [0.8409 [0.3859 |0.2307 |0.1611 |0.5284 |0.0395 |0.1418 |(0.2472

Table 6-1: Significance of the statistical features

First conclusions can be drawn from the significance of the features.

The FO contour as expected dfers ome significant differences between the two national

variants. Theintensity contour provides very little diff erences apart from the kurtosis of the

lesser-smoothed contour. Delta FO seams to be a very interesting signal providing very

significant percentiles, however for delta intensity only one feature is ggnificant (again the

lesser smoothed contour). The auto-correlation of FO and the crosscorrelation both

provide only one significant features. Multiplication o the signals does not lead to useful

differences, so this approach is left out. The zero-crosdng rate offers only one significant

featureaswdl.

As mentioned above [Thymé-Gobbel+1994 found pitch and delta-pitch the most useful
features, which comply with aur results, where features from those signals perform best

compared to aher signals (see scatter-plot in Figure 6.3).
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Figure 6.3: Statistical features FO-P75 vs. deltaF0-P90

6.2.2 Feature combination

In order to choose the features, the result of the t-test in sedion 6.2.1 , scatter plots and
histograms were used. The most potential features found were then used as input for the
clasdfier, as explained abowe.

For statistical features, the t-test gave a first dedsion criterion, which limited the number of
useful features. Further analysis showed that only those signals carrying more than just one
significant feature in the t-test were able to provide information for the discrimination o the
regional variants. The scatter-plots of the parameterized features already suggested potential
for posgble distinctive features.

The potential features were then used in a pair wise mmbination test. The clasdfication
algorithm used 90% of the data set to train the classfier and 10% of the data for testing. Due
to the small size of the database, the whale procedure was repeated 50 times with each time
different randomly chosen data samples for testing. Different humbers of division o the
data-range (with equal size and using percentiles) were tested; finaly, five sedions with
equal size per feature yielded the best results. See Table 6-2 for averaged results.
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DeltaF0

P25

P90

57

56

57

56

50
56

62

64
53

59

57

54
52

63

FO

P75

64
62

62

62

54
54

60

62

64
60

62

51

Intofit

54
52

53
62

62

57

57

58

61

61

52

Fuji saki

Aa | Ap | Amplitude | rising | falling| P10

55

63

mean | nterval
Fujisaki Aa

Fujisaki Ap

Intofit Amplitude

Intofit rising

Intofit falling

FO P10
FO P75

drFO P25

Table 6-2: Pair wise feature combination: Recognition rates in %

Figure 6.4 shows the clasdgfication wing the two Fujisaki parameters; Figure 6.5 shows

Fujisaki Ap versus deltaF0 P25, as examples for well classfied features.
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Figure 6.4: Classification of Fujisaki AP vs. Fujisaki AA: Dots show classification
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Figure 6.5: Classification of Fujisaki Ap vs. deltaFO P25 Parameter

To the best combinations from above a third feature was added using only 4 sedions per

feature this time. Again, linear division yielded dlightly better results than the percentile

division. See Table 6-3 for results.
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Table 6-3: Triple feature combination: Recognition rates in %

Combinations with more than three features didn’t improve the recognition performance.

This is expeded, because then we either get a sparse matrix (e.g. consider four feature
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combinations: If using four sections per feature the matrix contains 256 elements which is
more than there are sentences in aur data set) or in case of using fewer divisions per feature,

differentiation gets very poor.
6.2.3 Alternative Evaluation with MLP

For comparison, a standard MatLab Multi-Layer Perceptron (MLP) algorithm was used to
get alternative results.

The MLP had one hidden layer with 40 elements. Testing was dore as above with 90% of
the data used for training and 10% for testing. 50 dfferent test-data sets were randomly
choose and the result is an average over all 50 clasdfications. Those results are compared
with the best ones those from abowve.

Features Simple Clasdfication MLP
Fujisaki Aa, Ap, mean Interval 71% 68%
Fujisaki Aa, Ap, FO P10 71% 64 %
Fujisaki Aa, Ap, FO P75 72% 69 %
Fujisaki Aa, Intofit Ampl, FO P10 2% 70%

Table 6-4: Comparison of results

The MLP yields lower accuracy rates, probably the small data-set was not enough to train
the MLP. However, distinction above chance level can be observed.

6.3 Discussion

This chapter introduced a simple classfier, which was used for the final feature-evaluation.
Combinations of two and three features were evaluated. Combinations with Fujisaki features
are superior to aher groups. With either the mean interval feature or FO percentiles they
reach recognition rates above 70%. Overall processing time for the used features remains
within real-time.

Considering prosodic approaches in the past, the current results seem to be very promising.
[Thymé-Gobbel+1996 scored best with Mandarin versus Spanish reaching 86%. It is to
mention, that Mandarin and Spanish are linguistically very different languages, so
distinguishing is easer than identifying similar languages or variants of one language. Thisis
the reason [Cummins+1999 included German to the language set already used by [Thymé-
Gaobbel+199§ to compare prosodically similar languages. They scored 55.7% for English
versus German, which is practically chance level.
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[Itahashi+1999 and [Hazen+1997 used prosodic features for identification of 10/11-
languages and scored 28% / 20,9% correct recogrition.

The reasonably good results of my examinations have to be handled carefully. The major
shortcoming o this research is the size of the data-set. Because of the amount of information
that liesin prosody, e.g. syntax, semantics, speakers intention, emations, etc. (see Table 2-1)
a large database would be necessary to validate the results of my research.
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7. SUMMARY AND DISCUSSION

7.1 Discussion and Outlook

Where do we go from here? In Section 6.3 it was mentioned that the database was not

sufficient for areliable result. During the research some shartcomings of the database arose:

e The most important improvement would be to have much more speakers. 14 males and
6 females are dtatistically not representative for approximately 100 milli on German-
speaking people. The prablem is that speech corpora ae very expensive.

* The German speakers were al living in Austria. There is no information how long they
have been living there for. This leaves the question how this influenced their prosody.
This point is emphasized because the main reason for omitting speakers was that
Germans ounded rather Austrian.

e Ancther critical point of the database was that it all was read speech [Batliner1995.
Spontaneous feech is expeded to have the most characteristic prosody concerning
Austrian o German. However, having an application such as a phone data acoesssystem
in mind, therewill not be spontaneous sentences as well.

Further research should be dore on a big dataset covering a wide variety of speakers from all

of Germany and Austria.

For real life applications, the national variant of Switzerland would have to be included as

well. This would require speech corpus for German, including al national and regional

variants. Currently thereis no such database available.

Even though recognition rates were quite promising compared to previous work, it is dill

clear that using prosodic features alone annot be a reliable system. | don’'t expect prosodic

features alone to dfer reliable cues, due to the multitude of information that is transported
via suprasegmentals (Table 2-1). Nevertheless it can be used to improve phoreme-based
systems.
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Best performance is expeded, when including lexical information and using a much more
sophisticated prosodic analysis, as sen in [N6th+1997]. Then syntactic and maybe semantic
information can be considered. However, the computational cost would rise considerably,
becuse all possble national variants had to be considered for phoreme recogntion.
Whereas now, all calculations can easily be dorein real-time.

Of course, additional work has to be dorein finding an gotimal classfier that improves the
recognition rates above.

7.2 Summary

It is useful for ASR applications to distinguish between an Austrian and a German speaker to
improve performance. Because of possble degradation d information onphoneme level, an
approach was chosen, which is less sensitive to disturbances on the transmisson channel.
Using suprasegmental features sans to be a possble method.

The speed fundamental frequency (FO) and speech intensity were calculated. Various
possbilities to parameterize the FO-contour, such as Tilt, Intofit, Fujisaki, LPC-coefficients
and FO-peaks were investigated

Additionally different signals derived from FO and Intensity, such as delta, auto-corrdation,
crosscorrdation, multiplication were calculated and then used for statistical analysis
(standard deviation, skewness kurtosis, percentiles). Those features were then evaluated
using a standard t-test. Percentiles of Pitch and delta Pitch proved to be the most useful
features.

Along with Intofit, Fujisaki and mean-intervals those features were used for pair wise
clasdfication. Combinations with threefeatures left the Fujisaki features, Intofit Amplitude,
mean Intervals and the FO percentiles (P10, P75) as the most potential features reaching
recognitions rate of above 70%.

Figure 7.1 gives an overview of the most useful features.

Some improvements of the research were mentioned, the most important of all the size of the
speech corpus.
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